Susceptibility to Bictegravir and Cabotegravir and Integration site preferences of HIV-1 non-B subtype Viruses from patients failing Raltegravir in Uganda

<u>E Ndashimye^{1,2}, HP Kohio¹, PS Reyes, Y Li, M Avino¹, Ryan Ho¹, AS Olabode¹, F Kyeyune², I Nankya^{2,4}, C Kityo², ME Quiñones-Mateu³, S Barr¹, and E J Arts¹</u>

1-Western University, London, Ontario, Canada2-Joint Clinical Research Centre/CFAR, Kampala, Uganda3-University of Otago, Dunedin, New Zealand4-Case Western Reserve University, Cleveland, Ohio, USA

Background

- Second generation integrase strand transfer inhibitor (INSTI) cabotegravir (CAB) was recently approved is long-acting injectable, and bictegravir (BIC) is becoming accessible in settings with high HIV-1 non-B subtype viruses.
- Data on impact of INSTIs drug resistance mutations (DRMs) on integration site preference and susceptibility to BIC and CAB remains very scarce especially in HIV-1 non-B subtypes.

Methods

- Phenotypic assays on HIV-1 integrase recombinant subtype A and D viruses from 8 patients failing RAL-based third-line in Uganda was done in TZM-bl cells. Drug resistance was expressed as fold change (FC) in effective concentration 50 (EC₅₀) between HIV-1 controls and integraserecombinant viruses
- HIV-1 integration capacity into human genome was assessed in MT4 cells using Alu-gag qPCR.
- Integration site profiles were analyzed using total genomic DNA from HIV infected Ugandan patients: antiretroviral therapy (ART) naïve (n=30), raltegravir failing (n=30) and protease inhibitor failing patients (n=30) using Illumina MiSeq sequencing.

Results

 HIV-1 integrase recombinant viruses harboring single N155H or Y143R/S mutations or in combination with secondary INSTIs mutations were susceptible to both BIC and CAB.

Multiple primary INSTIs DRMs in form of E138A/G140A/G163R/Q148R, and E138K/G140A/S147G/Q148K mutations led to increased foldchange in EC₅₀ to both CAB (FC, 429->1000) and BIC (FC, 60->100).

The susceptibility of recombinant viruses to CAB and BIC. Panel A- UG206, B- UG1059, C- UG537, D- UG42, E- UG35, and F- UG481, drug susceptibility to BIC (left panel) and CAB (right panel) respectively

Results

The reduction in drug susceptibility in presence of multiple primary INSTIS DRMs was significantly high with CAB compared to BIC (P < 0.0023).</p>

The fold-change in EC₅₀ of recombinant viruses carrying multiple primary INSTIsresistance mutations. A) the fold-change (FC) in EC₅₀ (nM) of BIC and CAB for recombinant virus UG1059 (E138A/G140A/G163R/Q148R), B) UG206 (E138K/G140A/S147G/Q148K) Recombinant viruses showed impaired integration capacity, (<50%) relative to the wild type and controls.

The relative integration capacity of IN-recombinant viruses with diverse INSTIs-resistance mutations. The relative integration capacity of mutant viruses compared with controls (UG14 and UG98) and wild type (NL4-3) was determined in MT4 cells. The integrated HIV-1 LTR was amplified and quantified using (Alu-gag) qPCR. Means and \pm SD are shown from two independent experiments carried out in triplicates for each sample. qPCR results were normalized relative to NL4-3 wild type arbitrary set at 100%.

Results and conclusions

Contrary to ART naïve, viruses from RAL failing patients with INSTIS DRMs significantly integrated into lamina associated domains (P < 0.0001) and oncogenes (P < 0.05).</p>

Heatmaps depicting the fold enrichment or depletion of integration sites near common genomic features compared to matched random controls. Darker shades represent higher fold-changes in the ratio of integration sites to matched random control sites. Bins represent the distance of the integration sites from each genomic feature. Bin 0 = within the feature; Bin 1 = 1-499 bp; Bin 2 = 500-4,999 bp; Bin 3 = 5,000-49,999 bp; Bin 4 = >49,999 bp. Stronger relationships between retroviral integration site profiles are indicated by darker blue color in the pairwise distance matrix. Significant differences are denoted by asterisks (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Not a number (nan), 0 integrations were observed and 0 were expected by chance.

Conclusions

 Single N155H or Y143S/R or in combination with secondary mutations, remain susceptible to both BIC and CAB, however, multiple primary INSTIS DRMs leads to increased resistance to CAB and BIC in HIV subtype A and D viruses. BIC and CAB offer alternative option to ART experienced patients. INSTIS DRMs may encourage formation of latent reservoirs and malignancies in patients failing raltegravir.

