# Neurocognitive Outcomes Not Associated with Prior Syphilis or Number of Episodes of Syphilis in HIV+ Adults in Care in Ontario

<u>Brandon L. Christensen<sup>1</sup></u>, Farideh Tavangar<sup>2</sup>, Abigail Kroch<sup>3</sup>, Ann N. Burchell<sup>2</sup>, Sean B. Rourke<sup>2</sup>, Rodney K. Rousseau<sup>1</sup>, Lucia Light<sup>3</sup>, Tsegaye Bekele<sup>3</sup>, Darrell H.S. Tan<sup>2</sup>

<sup>1</sup>University of Toronto <sup>2</sup>Li Ka Shing Knowledge Institute, St. Michael's Hospital <sup>3</sup>Ontario HIV Treatment Network Cohort Study







St. Michael's

Inspired Care. Inspiring Science.

# Background

### Rationale

- Neurocognitive impairments observed in 40-60% of people living with HIV (PLWH), regardless of cART status
- Pathogenesis remains unclear
- Syphilis (*T. pallidum*) is a common STI in PLWH with incidence on the rise since 2000
- T. pallidum shown to invade CNS early in infection, putting PLWH at risk for neurosyphilis due to impairments in clearance of syphilis<sup>1-2</sup>

### **Hypothesis**

 We hypothesized that: 1) a history of syphilis (ever vs. never) and 2) the number of episodes of syphilis would be associated with worsened neurocognitive outcomes in PLWH

# Methods

### **Study Design and Sample**

 Retrospective study of PLHW in OHTN Cohort Study from 2008-2017 with neurocognitive testing data

### **Syphilis History**

- Serology data obtained via data linkage to Public Health Ontario Laboratories
- Number of episodes based on:
  - New reactive RPR or treponemal test in someone previously non-reactive; or
  - a 4-fold rise in RPR 120 days after a previous episode; or
  - Chart review
- Each episode of syphilis preceded neurocognitive testing

### **Neurocognitive Outcomes**

- Most recent MOS-HIV 4-item self reported cognitive scale
- Most recent Average T-score (ATS): based on formal neuropsychological testing of complex attention, speed of processing, and learning/memory
- Most recent Global deficit score (GDS): based on same neuropsychological testing, dichotomized into impaired (<u>></u>0.5) or unimpaired (<0.5)</li>

#### **Analysis**

- MOS-HIV and ATS: Wilcoxon Rank-Sum, Linear Regression Models
- GDS: Chi-Square, Logistic Regression Models
- Variables considered for adjustment in models were: age, education, income, race, years of HIV, nadir, most recent viral load, methamphetamine use, depression, and number of prior neurocognitive tests performed.

# Results

# **Statistics**

- Total 1288 participants with 366 episodes of syphilis across 271 people
- Median age 47 (IQR: 38,54), 53.5% were white, 78.0% were male
- Median CD4 count was 520 (IQR: 365,680) cells/mm<sup>3</sup> and 80.5% had HIV viral load <50 copies/mL
- Comparing those with syphilis vs. without syphilis, no significant difference in:
  - Median MOS-HIV (85 vs. 80,p=0.80)
  - Median ATS (45.7 vs. 45.7,p=0.92)
  - Impairment on GDS (54.3% vs. 52.3%,p=0.72)
- Models: no significant relationship between syphilis or the number of episodes of syphilis and neurocognitive outcomes (Table)

Table. Univariate and multivariable linear regression / logistic regression models

Univeriete Medel

Multivariable Model

|                           |         | Univariate Model                        |             | Multivariable Model                     |             |
|---------------------------|---------|-----------------------------------------|-------------|-----------------------------------------|-------------|
| Primary<br>Predictor      | Outcome | Regression<br>Coefficient<br>(95% C.I.) | P-<br>value | Regression<br>Coefficient<br>(95% C.I.) | P₋<br>value |
| Syphilis                  | MOS-HIV | -0.40 (-3.4,2.6)                        | 0.79        | 0.22 (-2.4,<br>2.9) <sup>b</sup>        | 0.87        |
| # of episodes of syphilis | MOS-HIV | -0.21 (-2.1,<br>1.6)                    | 0.82        | -0.11 (-1.8,<br>1.6) <sup>b</sup>       | 0.90        |
| Syphilis                  | ATS     | -0.01 (-1.3,<br>1.3)                    | 0.99        | -0.16 (-1.5,<br>1.2) <sup>c</sup>       | 0.82        |
| # of episodes of syphilis | ATS     | -0.02 (-0.9,<br>0.9)                    | 0.97        | -0.19 (-1.1,<br>0.8) <sup>c</sup>       | 0.70        |
| Syphilis                  | GDS     | 1.08 (0.8,1.5)ª                         | 0.65        | 1.13<br>(0.8,1.7) <sup>a,c</sup>        | 0.53        |
| # of episodes of syphilis | GDS     | 1.04 (0.8,<br>1.3) <sup>a</sup>         | 0.76        | 1.08 (0.8,<br>1.4) <sup>a,c</sup>       | 0.55        |

<sup>a</sup>Odds ratio of the logistic regression (Confidence Interval)

<sup>b</sup>Adjusted for age, education, race, years of HIV, nadir CD4, most recent viral load, methamphetamine use, depression, and number of prior MOS-HIV performed

<sup>c</sup>Adjusted for income, years of HIV, nadir CD4, most recent viral load, methamphetamine use, and depression

4

# Discussion

### **Findings**

- Contrary to our hypothesis, we found no association between syphilis history and neurocognition on self-reported scales or formal neuropsychological testing in PLWH in care in Ontario
- Literature on effects of syphilis on neurocognition remain mixed<sup>3-5</sup>
- Continued study required to identify contributing factors to neurocognitive decline in PLWH

### **Strengths**

- Large sample size in this area of study
- Serologic data available going back >20 years

## Limitations

- Unable to adjust for neurologic or psychiatric confounders
- Assumptions around positive treponemal tests may have underestimated number of episodes of syphilis

## **Future study**

 Effects of neurosyphilis vs. no syphilis

### References

<sup>1</sup>Marra CM, Castro CD, Kuller L, et al. Mechanisms of clearance of Treponema pallidum from the CSF in a nonhuman primate model. *Neurology*. 1998;51(4):957-961. doi:10.1212/WNL.51.4.957

<sup>2</sup>Katz DA, Berger JR, Duncan RC. Neurosyphilis: A Comparative Study of the Effects of Infection with Human Immunodeficiency Virus. *Arch Neurol*. 1993;50(3):243-249. doi:10.1001/archneur.1993.00540030009006

<sup>3</sup>Ho EL, Maxwell CL, Dunaway SB, et al. Neurosyphilis increases human immunodeficiency virus (HIV)-Associated central nervous system inflammation but does not explain cognitive impairment in HIVinfected individuals with syphilis. *Clin Infect Dis.* 2017;65(6):943-948. doi:10.1093/cid/cix473

<sup>4</sup>Marra CM, Deutsch R, Collier AC, et al. Neurocognitive impairment in HIV-infected individuals with previous syphilis. *Int J STD AIDS*. 2013;24(5):351-355. doi:10.1177/0956462412472827

<sup>5</sup>De Francesco D, Winston A, Underwood J, et al. Cognitive function, depressive symptoms and syphilis in HIV-positive and HIV-negative individuals. *Int J STD AIDS*. 2019;30(5):440-446. doi:10.1177/0956462418817612