
Type I interferons and interleukin 1 expression in *Mycobacterium tuberculosis* infection

Florence Mutua¹, Ruey-Chyi Su^{1,2}, T. Blake Ball^{1,2}, Sandra Kiazyk^{1,2}

¹Department of Medical Microbiology & Infectious Diseases, University of Manitoba ²National Laboratory for HIV Immunology, JC Wilt Infectious Diseases Research Centre, Winnipeg, MB

Contact: mutuaf@myumanitoba.ca

The authors have no conflict of interest to declare

1:Mtb induces IL- $1\alpha/\beta$ and IFN- α/β release

2: IFN- α/β induces IL-10 and IL-1RA release

3: IL-10 and IL-1RA inhibit IL-1 signaling

4: IL-1α/β signals to inhibit IFN-α/β

5. IL- $1\alpha/\beta$ inhibit Mtb replication

Introduction

Differences in the binding affinities of IFN- α and IFN- β to the IFNAR are associated with the functional specificity of these IFNs

Research Question: Do IFNα and β have differential effects on the expression of IL-1A and IL-1B genes in individuals with distinct Mtb phenotypes?

Hypothesis: Stimulation of peripheral blood mononuclear cells (PBMCs) with IFN-α or IFN-β suppresses IL-1A mRNA expression more than the IL-1B gene in Mtb infection

Methodology

Study design: Cross-sectional study

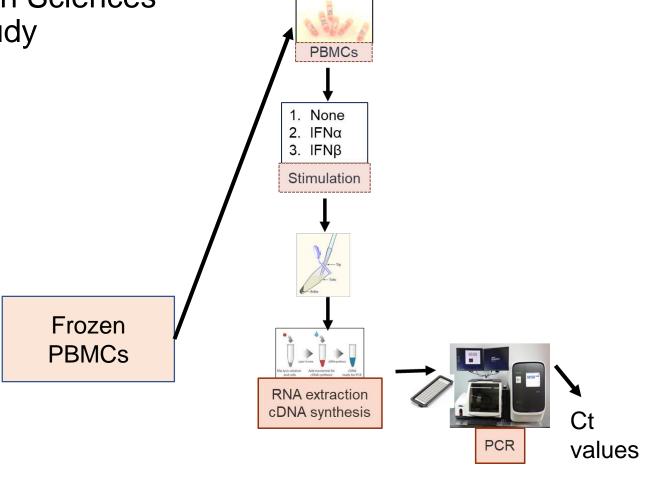
 Blood samples collected at the Health Sciences Centre, Winnipeg, Manitoba from study participants

•

Healthy controls (HC) (n=11)

No clinical or radiological or laboratory evidence of active disease

Tuberculin skin test TST (n=12)

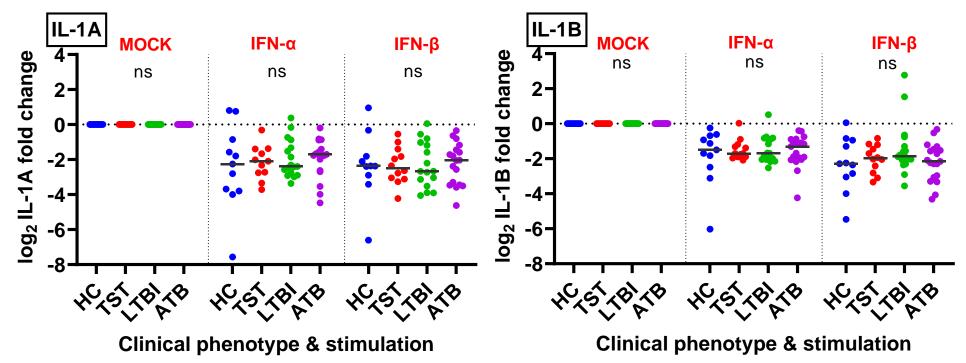

TST+IGRA-. No clinical or radiological or laboratory evidence of active disease

Latent TB infection (LTBI) (n=19)

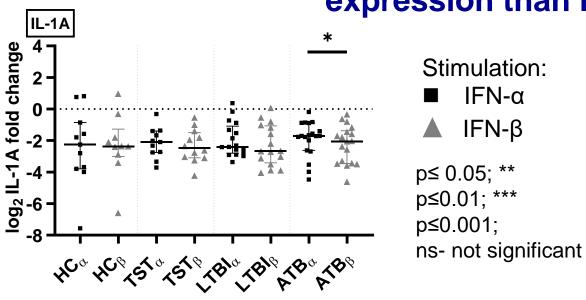
IGRA positive; No clinical or radiological evidence of active disease

Active TB (ATB) (n=19)

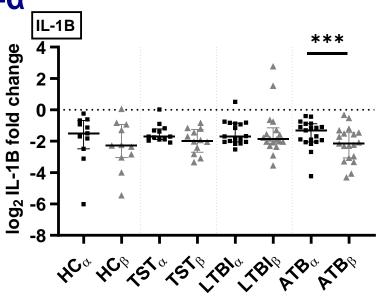
Clinical or radiological or laboratory evidence of active disease


Calculations:

 $\Delta Ct = Crt_{target gene} - Crt_{reference gene}$ $\Delta \Delta Ct = \Delta Crt_{stimulated} - \Delta Crt_{unstimulated}$ $Relative expression = 2^{-\Delta Crt}; Fold change = 2^{-\Delta \Delta Crt}$


Results

Treatment of PBMCs with IFN-α/β suppresses IL-A and IL-1B expression


IL-1A/B suppression did not differ between Mtb phenotypes

IFN-β had a greater effect in suppressing IL-1A and IL-1B expression than IFN-α ___

Clinical phenotype & stimulation

Clinical phenotype & stimulation

Conclusion

- IFN-α- and IFN-β downregulate IL-1A and IL-1B mRNA expression in Mtb infection
 - IFN-α or IFN-β downregulates IL-1A mRNA expression more than the IL-1B gene in Mtb infection
- □ IFN-β downregulates IL-1A and IL-1B gene expression more than IFN-α. This was significant in active TB suggesting differential effects of IFN-α- and IFN-β in TB disease
- Given that IFN-α and IFN-β are therapeutic agents in multiple sclerosis, cancers, and chronic hepatitis, it is important to understand their effect on factors that influence TB disease control or progression
 - This could be useful for monitoring patients on IFN-based therapies

Acknowledgements: Study participants; National Laboratory for HIV Immunology (JC Wilt Infectious Diseases Research Centre)

