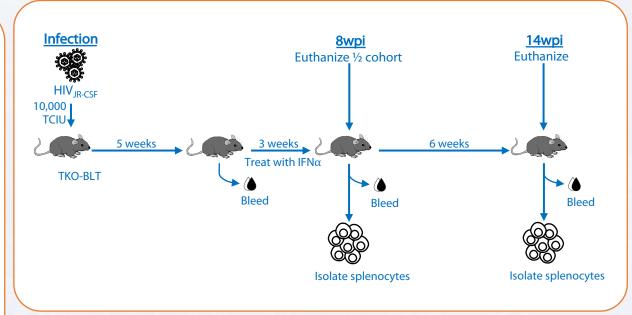
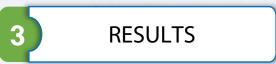


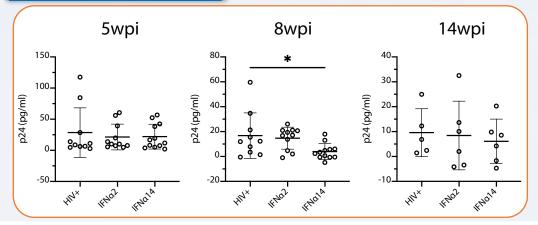
The effect of interferon-alpha subtypes on HIV-1 associated CD8⁺ T cell hyperactivation and dysfunction

Saurav Saswat Rout¹, Yunyun Di¹, Kathrin Sutter², Ulf Dittmer² and Kerry J. Lavender¹

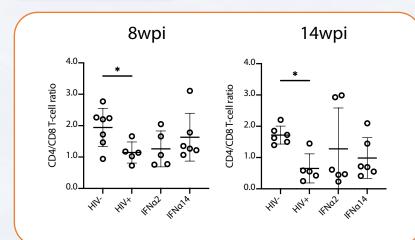

¹Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N5E5


²Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany, 47057

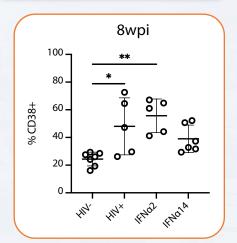
Authors disclose no conflicts of interest



- HIV-1 infection is typically characterized by progressive loss of CD4⁺ cells and aberrant T-cell activation.
- Interferon-alpha (IFN α), mainly IFN α 2, has been associated with exacerbation of HIV-1 disease progression, immune activation and related CD8⁺ T-cell dysfunction.
- Dysfunctional CD8⁺ T cells are characterized by hyperactivation, exhaustion, loss of effector function, including cytotoxic capacity, and production of proinflammatory mediators.
- During HIV-1 infection not all IFN α subtypes are produced in equal amounts.
- Also, some subtypes that have been shown to have beneficial effects that are produced at a later stage of HIV-1 infection and at a lower level than IFN $\alpha 2^{5,6}$.
- Our previous study showed that IFN α 14 was able to supress HIV-1 replication both *in vitro* and in humanized mice.
- The goal of this study is to determine if long-term IFN α 14 therapy can alleviate CD8⁺ T-cell related activation and dysfunction.

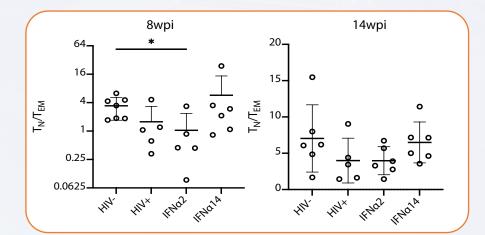


A Plasma viral load

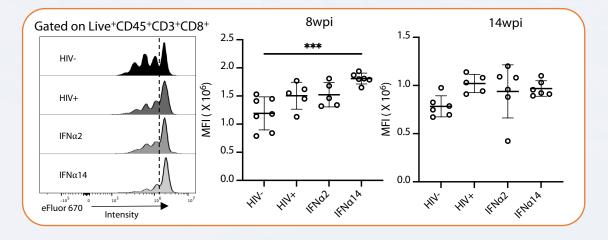


RESULTS

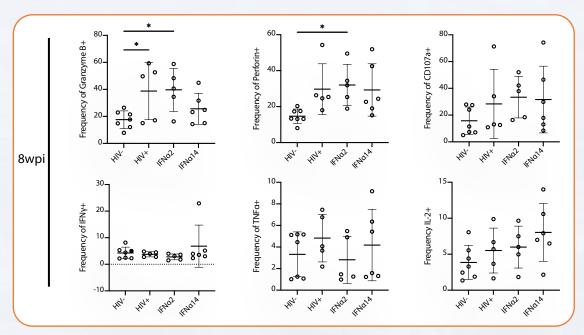
B T-cell ratio

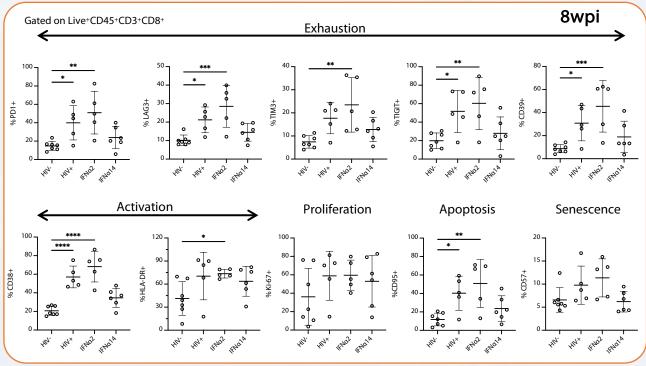


CD4⁺ T-cell activation

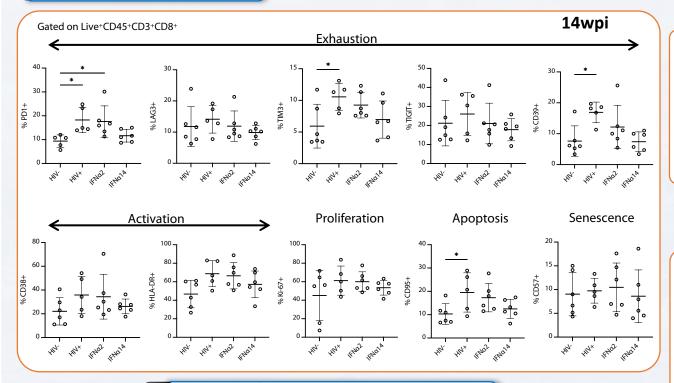


- A. At 8wpi, viral load in the IFN α 14 treated group was lower than untreated controls but the viral load normalized at 14wpi in all the groups.
- B. At both timepoints, the CD4/CD8 T-cell ratio was significantly lower in untreated mice. IFN α treated mice had lower CD4/CD8 T-cell ratios but there was no statistical significance.
- C. IFN α 14 reduced CD4⁺ T-cell activation at 8wpi compared to untreated and IFN α 2 treated
- D. At 8wpi, IFN α 2 treatment resulted in a lower T_N/T_{EM} ratio whereas IFN α 14 treatment resulting in a T_N/T_{EM} ratio comparable to uninfected.
- E. Proliferative capacity of CD8⁺ T cells was suppressed at 8wpi, but it reverted to normal after IFN α 14 treatment was withdrawn.


D CD8⁺ T-cell memory subsets



ED CD8⁺ T-cell proliferation



- G. Immediately post-treatment (8wpi), untreated and IFN α 2 treated mice had an increased frequency of cytolytic markers but at both 8 and 14wpi IFN α treatment did not affect CD8⁺ T-cell secretion of functional mediators.
- H. IFN α 14 treatment resulted in exhaustion, activation and apoptosis marker frequency comparable to uninfected controls at 8wpi. In contrast, untreated and IFN α 2 treated mice had significantly increased frequencies of exhaustion, activation and apoptosis markers compared to uninfected controls. There was was no significant difference in senescence or proliferation markers but there was a trend toward increased frequency of CD57⁺ CD8⁺ T cells in both HIV-1⁺ and IFN α 2 treated mice immediately post-treatment (8wpi).
- I. Six weeks after treatment cessation (14wpi), frequencies of CD8⁺ T cells expressing some markers (TIM3, CD39, CD95) remained significantly higher in untreated controls but not in the IFN α 14 treated group. Additionally, PD-1 remained significantly higher in untreated and IFN α 2 treated groups at 14wpi despite similar viral loads between groups (Fig A).

Phenotypic markers

CONCLUSIONS

- IFNα14 treatment reduced the frequency of CD8⁺ T cells expressing markers of dysfunction to uninfected levels that persisted for six weeks post-treatment withdrawal
- Differentiation of the total CD8⁺ T cell compartment to the T_{EM} phenotype was reduced by IFN α 14 suggesting it may assist in preventing bystander T-cell activation.
- Although IFN α 14 did suppress CD8⁺ T-cell proliferation initially, it did not impact the production of functional mediators.

SIGNIFICANCE

IFN α 14 treatment did not exacerbate disease progression and may have therapeutic potential to alleviate CD8+ T-cell hyperactivation and exhaustion during HIV-1 infection.

REFERENCES

- 1. Cheng L, Ma J, Li J, Li D, Li G, Li F, et al. **Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs**. *J Clin Invest* 2017; 127(1):269-279
- 2. Cheng L, Yu H, Li G, Li F, Ma J, Li J, et al. Type I interferons suppress viral replication but contribute to T cell depletion and dysfunction during chronic HIV-1 infection. *JCI Insight* 2017; 2(12).
- Doyle T, Goujon C, Malim MH. HIV-1 and interferons: who's interfering with whom? Nat Rev Microbiol 2015; 13(7):403-413.
- 4. Zhen A, Rezek V, Youn C, Lam B, Chang N, Rick J, et al. **Targeting type I interferon-mediated activation restores immune function in chronic HIV infection**. *J Clin Invest* 2017; 127(1):260-268.
- Lehmann C, Taubert D, Jung N, Fatkenheuer G, van Lunzen J, Hartmann P, et al. Preferential upregulation of interferon-alpha subtype 2 expression in HIV-1 patients. AIDS Res Hum Retroviruses 2009; 25(6):577-581.
- Harper MS, Guo K, Gibbert K, Lee EJ, Dillon SM, Barrett BS, et al. Interferon-alpha Subtypes in an Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms. PLoS Pathog 2015; 11(11):e1005254.

ACKNOWLEDGEMENTS

