ABSTRACT

INTRODUCTION
African, Caribbean and Black (ACB) men and HIV in Canada

1. Low HIV prevalence rates in Canada tends to mask the realities of infections among sub-population in the country (Antabe et al., 2021)
2. ACB people constitute less that 5% of Canada's population, but they make up more than a quarter (25.3%) of HIV cases in the country (Haddad et al., 2018; StatisticsCanada, 2019).
3. Specifically in Ontario, 22.5% of those living with HIV identify as ACB (Nelson et al., 2019).
4. Heterosexual ACB men emerge as particularly vulnerable because:

- their health needs are not prioritized
- they do not use HIV-related services
- increasing heterosexual infections impacts them

5. HIV testing is emphasized in reducing new infections among high-risk groups.
6. Despite this, there is dearth of studies examining the predictors of the uptake of HIV testing among heterosexual ACB men in the context of Toronto with the largest ACB community in Ontario and Canada live.

METHODS
$\%$ Data

1. Data were obtained through the quantitative phase of a larger Ontario-based study called weSpeak.
2. Data collection followed a community- and venue-based sampling approaches in recruiting respondents which is recommended for hard-to-reach populations.
3. Self-identified heterosexual ACB men $(n=325)$.

* Measures:
- Dependent Variable: Ever Tested for HIV
- Binary variable coded as " 0 " = never tested and " 1 " = ever tested
- Explanatory Variables (Andersen's framework of health care utilization:
- Predisposing factors
- Enabling factors
- Need factors

RESULTS

Table 1. Univariate analysis of the dependent and independent variables	
	Percentage
Ever tested for HIV	
No	36
Yes	64
Age of respondents	
≥ 50	15
40-49	16
30-39	25
20-29	31
16-19	13
Education	
University or higher	30
Some postsecondary	38
Secondary or lower	32
Immigrant status	
Native-born	32
Immigrants	68
Religion	
Christian	72
Muslim	11
Other	17
Marital status	
Never married	50
Currently/ever married	36
In relationship	14
Employment status	
Full-time	52
Part-time	15
Unemployed	33
Family income	
No income	22
$\leq \mathbf{2 0 , 0 0 0}$	27
\$20,000-39,999	13
\$40,000-59,999	13
\$60,000-79,999	8
\geq \$80,000	17
Multiple partners	
No	74
Yes	26
Condom use	
No	53
Yes	47
Total	325

Table 2. Negative log-log models predicting 'ever tested for HIV'

	Bivariate Model 1		Multivariate					
			Model 2		Model 3		Model 4	
	OR	SE	OR	SE	OR	SE	OR	SE
Age of respondents								
≥ 50	1.00		1.00		1.00		1.00	
40-49	4.03***	1.75	5.57***	2.59	5.63***	2.65	6.05***	2.88
30-39	2.83***	0.93	3.49***	1.17	3.94***	1.38	4.71***	1.74
20-29	0.96	0.26	1.51	0.51	1.67	0.60	1.74	0.65
16-19	0.38***	0.12	0.69	0.28	0.58	0.26	0.57	0.26
Education								
University or higher	1.00		1.00		1.00		1.00	
Some postsecondary	0.58*	0.17	0.60	0.20	0.59	0.20	0.59	0.20
Secondary or lower	0.36***	0.10	0.49**	0.15	0.47**	0.16	0.57*	0.19
Immigrant status								
Native-born	1.00		1.00		1.00		1.00	
Immigrants	2.57***	0.51	2.48***	0.59	2.57***	0.66	3.14***	0.86
Religion								
Christian	1.00		1.00		1.00		1.00	
Muslim	0.62*	0.17	0.55*	0.18	0.54*	0.18	0.60	0.22
Other	1.03	0.28	1.16	0.33	1.27	0.35	1.27	0.35
Marital status								
Never married	1.00		1.00		1.00		1.00	
Currently/ever married	1.64**	0.36	0.87	0.24	0.91	0.25	0.82	0.22
In relationship	1.30	0.37	1.26	0.39	1.23	0.39	1.05	0.34
Employment status								
Full-time	1.00				1.00		1.00	
Part-time	1.02	0.31			2.22**	0.75	2.15**	0.72
Unemployed	0.99	0.21			1.80**	0.50	2.34***	0.68
Family income								
No income	1.00				1.00		1.00	
$\leq \mathbf{2 0 , 0 0 0}$	0.90	0.24			0.92	0.25	0.93	0.26
\$20,000-39,999	0.93	0.34			1.19	0.42	1.15	0.42
\$40,000-59,999	0.97	0.32			1.29	0.50	1.23	0.46
\$60,000-79,999	1.52	0.75			1.63	0.90	1.43	0.81
$\geq \$ 80,000$	1.18	0.39			1.37	0.49	1.26	0.46
Multiple partners								
No	1.00						1.00	
Yes	1.95***	0.38					2.76***	1.07
Condom use								
No	1.00						1.00	
Yes	0.57***	0.11						
							1.10	0.40
NOTE: ***p<0.001, * Model 4: Need	$0.05 ; \mathrm{Mo}$	del 2: pr	disposing	factors	Model 3	enabli	ng factor	

SUMMARY

1. Low level of educational attainment was associated with a lower likelihood of ever testing.
2. Mid-age ACB men were more likely to have ever tested for HIV compared to older age counterparts.
3. Immigrants were more likely to have ever tested relative to native-born
4. Part-time and unemployed ACB men were more likely to have ever tested
5. ACB men with multiple sexual partners were more likely to have ever tested
6. Marital status and family income were not significant predictors of ever testing

DISCUSSION AND CONCLUSION

1. This research demonstrates that ever testing for HIV is influenced by
several factors, ranging from predisposing, enabling to need factors.
2. Higher educational attainment is important in getting ACB men to test
for HIV.
3. Mid-age ACB men may be more conscious about their health which
may explain their higher likelihood of testing.
4. Mandatory medical screening for immigrants explains their higher
likelihood of ever testing for HIV.
5. ACB men who are fully employed may not be having enough time to
test for their HIV serostatus.
6. ACB men with multiple sexual partners may have a heightened sense
of HIV risk and therefore more likely to ever test.
7. Family income not as a significant predictor of HIV testing may imply
Canada has made progress in removing financial barriers to accessing
HIV testing.
8. Need to understand the barriers to HIV testing and the design of a
more nuanced population-based approach to HIV testing that
incorporates case-management or various incentives.

REFERENCES

Antabe, R., Konkor, I., Mcintosh, M., Lawson, E., Husbands, W., Wong, J., Arku, G., \& Luginaah, I. (2021). "I went in there, had a bit of an issue with those folks" : everyday challenges of heterosexual African, Caribbean and black (ACB) men in accessing HIV/AIDS services in London, Ontario. BMC Public Health, 21(1), 1-14.
Haddad, N., Li, J. S., Totten, S., \& Mcguire, M. (2018). HIV in Canada - Surveillance Report, 2017 (Vol. 44, Issue 1)
Nelson, L. E., Tharao, W., Husbands, W., Sa, T., Zhang, N., Kushwaha, S., Absalom, D. \& Kaul, R. (2019). The epidemiology of HIV and other sexually transmitted infections in 294.

