Household transmission of the Omicron Variant of SARS-CoV-2 — Results from the DigiHero study

Medizinische Fakultät der Martin-Luther-Universität Halle-Wittenberg

B. Klee¹, S. Diexer¹, C. Xu¹, C. Gottschick¹, C. Hartmann¹, KM. Schlinkmann², A. Kuhlmann¹, J. Rosendahl¹, M. Binder¹, M. Gekle¹, M. Girndt¹, J. Hoell¹, I. Moor¹, D. Sedding¹, S. Moritz¹, T. Frese¹, R. Mikolajczyk¹

1 University Medicine of the Martin-Luther-University Halle-Wittenberg, Germany

2 MVZ Labor Krone eGbR, Siemensstraße 40, 32105, Bad Salzuflen, Germany

INTRODUCTION

- Studies reported that the Omicron variant, which spread rapidly worldwide by the end of 2021, is able to escape vaccine immunity and leads to high transmissibility¹.
- A meta-analysis in early 2022 estimated a secondary attack rate (SAR) of 42.7% for Omicron².
- Households are important settings for the transmission of SARS-CoV-2. Vaccination and boosters, as well as wearing masks and selfisolation in a household, can reduce the risk of secondary infections³.
- However, less is known about how the risk of acquiring a new infection depends on time since last infection/vaccination and the antibody titre at the time of exposure.

AIM

We aimed:

- to determine household transmission rates of omicron variants in a community setting with mixed immunity.
- to explore the effect of titre decrease and the time since last exposure (vaccination or infection) on the risk of acquiring an infection in the household.

METHOD

- We used the population based cohort study for digital health research in Germany (DigiHero).
- We invited 34,666 households between June and December 2022 to participate in a prospective household transmission study.
- Participants notified the study team in case of a positive SARS-CoV-2 test in the household.
- All household members received:

Dried Blood Spot Cards to determine antibody levels

Symptom Diaries and questionnaires

GAM and logistic regression models were used for statistical analysis

RESULTS

262 households with 662 participants were included in the study.

Secondary Attack Rate (SAR)

Risk of acquiring infection depending on previous exposure

Figure 2: Probability of household transmission depending on protein S-titre at the time point of exposure in adults (a) and children (b) and by time since last exposure (vaccination or infection, c, d); censored at upper 5% to control for unstable estimation in the area of sparse data

Probability of household transmission

Table 1: Probability of infection acquisition in household transmission depending on different factors

Variable		Univariable Odds Ratio (95% CI)
Time since last vaccination or infection	Per one month	1.18 (1.10;1.26)
Direction of transmission	Adult to adult	Ref.
	Child to adult	0.72 (0.39;1.32)
	Adult to child	0.38 (0.22;0.64)
	Child to child	0.34 (0.11;1.09)
Prevention measures	Yes	Ref.
	No	1.68 (1.11;2.55)
Severity of symptoms of the index case	Strong symptoms	Ref.
	Mild symptoms	0.74 (0.43;1.28)
	No symptoms	0.46 (0.08;2.81)

CONCLUSIONS

- The transmissibility of Omicron Variant of SARS-CoV-2 in a household exposure is high. Since some infections could have occurred independently, our study can overestimate the risk of household transmission.
- Vaccinations or preceding infections offer protection for up to 12 months (but linearly decreasing).
- Antibody titres are negatively correlated with the risk of acquiring infection. Only high titres and short time after previous exposure grant a high level of protection.

REFERENCES

- 1 Mohsin M et al. Omicron SARS-CoV-2 variant of concern: A review on its transmissibility, immune evasion, reinfection, and severity. Medicine (Baltimore). 2022;101(19):e29165.
- 2 Madewell ZJ et al. Household Secondary Attack Rates of SARS-CoV-2 by Variant and Vaccination Status: An Updated Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(4):e229317.
- 3 Baker JM et al. SARS-CoV-2 B.1.1.529 (Omicron) Variant Transmission Within Households Four U.S. Jurisdictions, November 2021-February 2022. MMWR Morb Mortal Wkly Rep. 2022;71(9):341-346.

CONTACT INFORMATION

- Rafael Mikolajczyk, Prof. Dr.
- Institute for Medical Epidemiology, Biometry and Informatics, Medical Faculty of the Martin-Luther-University Halle-Wittenberg, Germany
- Email: rafael.mikolajczyk@uk-halle.de