

A geostatistical analysis of snakebite risk in Kenya

Shelui S Collinson¹, Cecilia Ngari², George Aol³, Stephen Munga³, George O. Oluoch², Peter J Diggle⁴, David G Lalloo¹

¹Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK, ² Kenya Snakebite Research & Intervention Centre, Nairobi, Kenya, ³Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya, ⁴CHICAS, Lancaster University Medical School, Bailrigg, Lancaster, UK

Geostatistical analysis supports prediction of snakebite risk distribution in Kenya, where routine surveillance data is incomplete.

Covariate associations dominate risk predictions from community survey data, with small-scale spatial correlation seen.

BACKGROUND

- Approximately 138,000 snakebite deaths/year globally
- High-quality burden data lacking:
 - Routine surveillance data low quality/incomplete
 - Community surveys expensive and difficult to conduct
- Spatial analysis techniques an alternative to estimating risk distribution: effective in understanding disease epidemiology in areas with data availability challenges.

METHODS

- Snakebite risk data was collected from contrasting settings in Kenya
- Cluster-sampled survey:
 Turkana and Kitui
 Counties
- Full-population survey:
 Siaya County

Fig. 1. Community survey locations

- Household residents screened for history of snakebite
- Model based geostatistics, using environmental, climatic and sociodemographic explanatory factors, was used to assess the spatial variation in snakebite risk.

RESULTS

Table 1. Key survey outcomes

	Any episode	Snakebite only	Snake spitting in eye only	Total sampled
Turkana	839 (7.9%)	782 (7.5%)	60 (0.6%)	10,494
Kitui	571 (3.7%)	317 (2.1%)	267 (1.7%)	15,307
Siaya	896 (0.4%)	-	-	211,180

- Lifetime risk positively associated with poverty and distance to cultivated land and herbaceous areas
- Survey site statistically significant
- Residual spatial correlation found at small spatial scale (~ 2.5km).

Table 2. Binomial geostatistical model output for joint analysis

Regression parameter	Estimate	Standard error	P value
Intercept	-4.7177	0.3203	<0.001
Siaya county	-2.7897	0.3283	<0.001
Poverty	2.1636	0.4436	<0.001
Distance to herbaceous area edges	0.0324	0.0147	0.0277
Distance to cultivated areas	0.0298	0.0136	0.0290
Log (sigma ²)	-0.8133	0.2247	
Log (phi)	7.8541	0.2316	
Phi (metres)	2,576		
Log (tau²)	-2.2478	0.7841	

Fig. 2. Predicted lifetime risk of snakebite. Predictions derived from geostatistical model. Left: predicted lifetime prevalence; right: exceedance probability (5% threshold). Top. Turkana; Middle. Kitui; Bottom. Siaya.

CONCLUSIONS

- Importance of poverty across counties as a predictor of risk
- Small-scale (village/group of villages-level) spatial variation:
 potential importance of specific local non-spatial factors on risk
- Enables potential prediction of risk across counties where health system is weaker and routine data less unreliable
- Further analysis from contrasting settings (different snake habitats and sociodemographic environments) needed to refine predictions

ADDITIONAL KEY INFORMATION

- Email: shelui.collinson@lstmed.ac.uk
- Funding: Wellcome Trust
- Acknowledgements: to all technical and administrative staff who supported collection of study data

REFERENCES

- 1. Gutiérrez *et al.* Snakebite envenoming. *Nat Rev Dis Primers* 2017
- Kasturiratne *et al.* The global burden of snakebite. *PLoS Med* 2008
 Longbottom *et al.* Vulnerability to snakebite envenoming. *The Lancet* 2
- 3. Longbottom et al. Vulnerability to snakebite envenoming.. The Lancet 20184. Williams et al. Strategy for a globally coordinated response to a priority neglected tropical
- disease. *PLoS Negl Trop Dis* 2019

 5. Pintor *et al.* Addressing the global snakebite crisis with geo-spatial analyses. *Toxicon X* 2021

