

Interventions to prevent post-tuberculosis sequelae Kefyalew A Alene^{1,2,3}, Lucas Hertzog¹, Beth Gilmour^{1,2}, Archie CA Clements⁴, Megan B Murray³

¹School of Population Health, Faculty of Health Sciences, Curtin University, Australia; ²Geospatial and Tuberculosis Research Team, The Kids Research Institute Australia, Australia; ³Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA; ⁴Peninsula Medical School, University of Plymouth, Plymouth, UK

Rehabilitation programs significantly improved lung function (Hedges's g = 0.21; 95%) CI: 0.03, 0.39) and prevented neurological sequelae (RR=0.10; 95% CI: 0.02, 0.42). Comprehensive interventions and cognitive-behavioural therapy significantly reduced the risk of mental health disorders among TB survivors (Hedges's g = -1.89; 95% CI: -3.77, -0.01).

BACKGROUND

Tuberculosis (TB) remains a global public health challenge, causing substantial mortality and morbidity. While TB treatment has made significant progress, it often leaves survivors with post-TB sequelae, resulting in long-term health issues. Current healthcare systems and guidelines lack comprehensive strategies to address post-TB sequelae, primarily due to insufficient evidence. This systematic review and meta-analysis aimed to identify effective interventions for preventing post-TB sequelae.

METHODS

- A systematic search was conducted across four databases including PubMed, SCOPUS, Web of Science, and Cochrane Central Register of Controlled Trials from inception to September 22, 2023.
- Eligible studies reported interventions designed to prevent post-TB sequelae were included.

		Treatm	ent		Contro	ol OD	Hedges's g	Weight
Study	N	Mean	SD	N	Mean	SD	with 95% CI	(%)
After treatment								
Orooj M	45	100.37	16.00	45	101.45	15.90	-0.07 [-0.48, 0.34]	14.46
Ahmed S	31	85.22	9.68	31	80.07	6.10	- 0.63 [0.12, 1.13]	10.45
Singh SM	29	60.55	15.26	29	60.98	16.37	-0.03 [-0.53, 0.48]	10.32
Ando M	32	72.00	105.00	32	47.30	18.50	0.32 [-0.16, 0.81]	11.04
Heterogeneity: $\tau^2 =$	0.05,	$ ^2 = 44.5$	0%, H ² =	1.80)		0.20 [-0.12, 0.52]	
Test of $\theta_i = \theta_j$: Q(3)	= 5.4	1, p = 0.1	4					
Test of θ = 0: z = 1.2	23, p	= 0.22						
During treatment								
Visca D	34	52.40	14.80	34	51.40	15.10	0.07 [-0.40, 0.54]	11.69
Jones R	29	67.00	19.00	29	68.00	19.00	 -0.05 [-0.56, 0.46]	10.32
Grass DD	34	0.96	0.06	33	0.94	0.07	0.30 [-0.17, 0.78]	11.45
Xu Z	75	58.44	8.81	75	54.85	7.92	0.43 [0.10, 0.75]	20.27
Heterogeneity: $\tau^2 =$	0.01,	l ² = 13.9	8%, H ² =	1.16	3		0.24 [0.01, 0.47]	
Test of $\theta_i = \theta_j$: Q(3)	= 3.1	5, p = 0.3	7					
Test of θ = 0: z = 2.0	01, p	= 0.04						
Overall							0.21 [0.03, 0.39]	
Heterogeneity: $\tau^2 =$	0.01,	l ² = 21.7	7%, H ² =	1.28	3			
Test of $\theta_i = \theta_j$: Q(7)	= 8.7	0, p = 0.2	7					
Test of θ = 0: z = 2.3	31, p	= 0.02						
Test of group differe	nces	: Q _b (1) =	0.03, p =	0.86	6		 _	

• A random effect meta-analysis was conducted where applicable, and heterogeneity between studies was evaluated visually using forest plots and quantitatively using an index of heterogeneity (I2).

RESULTS

- From the 2,525 unique records screened, 25 studies involving 10,592 participants were included.
- Different interventions were evaluated for different outcomes.
- However, only a few interventions were effective in preventing post-TB sequelae.

Table. Post- TB sequela and possible intervention strategies

Post-TB	Number	Intervention strategies for preventing sequelae
sequelae	of studies	
		 Pulmonary rehabilitation program
		 Adjunctive surgical resection
Lung function	9	 Comprehensive nursing care
		 Micronutrient supplementation

Figure: Effects of interventions during and after treatment on preventing post-TB lung impairment.

Our study demonstrated that early initiation of rehabilitation programmes may result in better lung function compared to late initiation.

CONCLUSIONS

Rehabilitation programs prevented post-TB lung, neurologic and mental health sequelae, while adjuvant therapies and other interventions require further investigation.

Liver function	6	 Mitochondrial nutrients (e.g., acetyl-L-carnitine) Hepatoprotective agents (e.g., silymarin and silibinin)
Neurologic	5	 Adjunctive therapy (e.g., dexamethasone) Rehabilitation programs.
Mental health disorder	4	 Comprehensive interventions Pulmonary rehabilitation programs Cognitive-behavioural therapy
Hearing	2	 Early medical intervention Adjuvant steroid therapy Adjuvant steroid therapy

ADDITIONAL KEY INFORMATION

Additional Resources: PMID 38434448

Author Contact Information: kefyalew.alene@curtin.edu.au

Funding Source: Healy Medical Research Raine Foundation, Curtin School of Population Health, The Kids Research Institute Australia and NHMRC Acknowledgements: Bendat Family Children's Foundation

Research Scholarship & Barbara May Scholarship

- Interventions targeting post-TB liver sequelae did not show significant reductions in sequelae (RR=0.90; 95% CI: 0.52, 1.57).
- Moreover, adjunctive therapies did not show a significant effect in preventing post-TB neurological sequelae (RR= 0.62, 95% CI: 0.31, 1.24).