General use of multiple testing corrections in life sciences could boost replicability

Otília Menyhárt^{1,2,3}, Balázs Győrffy^{1,2,3,4}

Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Hungarian Research Network, Budapest, 1117, Hungary 2 National Laboratory for Drug Research and Development, Budapest, 1117, Hungary 3 Department of Bioinformatics, Semmelweis University, Budapest, 1094, Hungary 4 Department of Biophysics, Medical School, University of Pecs, Pecs, 7624, Hungary

Many studies fail to adjust for multiple hypothesis testing, resulting in irreproducible findings. We created a tool (www.multipletesting.com) to automate these corrections.

BACKGROUND

- Most published research findings may be false.
- Testing multiple hypotheses increases false positives, and uncorrected p-values can obscure real biological insights.

For 1000 variables, assume that all H0 are true, i.e. no real difference between control and experimental groups

p - values without correction:

• Many studies, including clinical trials and epidemiology, fail to adjust for multiple testing.

Prevalence of adjustments (reviews)

Study	Year published	Number of studies with multiple comparisons	Proportion of studies with adjustments
Cohen	2010		22%
Tyler et al.	2011	>20	5.80%
Stacey et al.	2012	538	14%
Baron et al.	2013		40%
Wason et al.	2014		51%
Gewandter	2014	33	45%
Chalkidou	2014	15	1 study
Vickerstaff et al.	2015	60	25%
Kirkham et al.	2015	140	10%
Dworkin et al.	2016	29	21%
Benjamini and Cohen	2017		20%
Brand	2021	89	2 studies altogether
Nevin	2022	38	11% final reports, 7% protocols
Pike	2022	28	48%

- p = 0.05 results in 50 false positive
- p = 0.01 results in 10 false positives

		actual		
		positive	negative	
predicted	positive	true positive	false positive	
	negative	false negative	true negative	

FDR

BONFERRONI vs. FALSE DISCOVERY RATE?

Bonferroni The original p value Bonferroni-corrected p value = $\frac{\alpha}{m}$

controls the expected proportion of false positives

GOALS

to provide an automated interface for scientists to apply corrections for multiple hypothesis testing

multipletesting.com

What is multipletesting.com is useful for?

Conducting multiple statistical tests increases the likelihood that a significant proportion of associations will be false positives, clouding real discoveries. Several strategies exist to overcome the problem of multiple hypothesis testing. Our multiple testing correction tool provides the five most frequently used adjustment tools to solve the problem of multiple hypothesis testing, including the Bonferroni, the Holm (step-down), the Hochberg (step-up) corrections, and allows to calculate the False Discovery Rate (FDR) and **q-values**.

Using this multiple testing calculator is straightforward and user-friendly. It has never been easier to adjust p-values! Check out the list of possibilities for multiple hypothesis testing!

Multiple Testing

START PERFORM MULTIPLE HYPOTHESIS TESTING USING A LIST OF P VALUES

PUBLICATION

READ OUR GUIDE TO MULTIPLE HYPOTHESIS TESTING

RESULTS

Analysis

Please enter (copy-paste) your p-values into the allotted space and select the relevant correction method(s). For more information please refer to our paper.

Step 1: Enter list of p-values:

Step 2: Compute following tests:

ignificant pivalue (values over these threshold

strong control of type I error

The number of tests perform

- effective when a small number of hypotheses are tested
- high risk of false negatives
- drastically lowers statistical power
- higher power: more suitable for large datasets
- useful for exploratory research where some true effects are expected among many hypotheses.

when testing 20 variables

adjusted p 0.05/20 = 0.0025 - too stringent threshold!

FDR= 0.05 allows 5% of the discovered biomarkers to be false positives, which is more forgiving than the **Bonferroni!**

CONCLUSIONS

	RESET	Step 3: START ANALYSIS	0.025186081	
0 25262	11	🗹 q value	q values:	
0.03222		O user set:		
0.18117		○ FDR = 1%	0.00365	
0.01873		○ FDR = 5%		
0.12683		FDR = 10%	FDR	
0.09287				
0.60425		FDR	0.00365	
0.53029		✓ Hochberg	Hochberg	
0.88238		✓ Holm		
0.01852			0.00166	
0.08037		Bonferroni		
0.07418		O user set:	Holm	
0.27840		O p = 0.001		
0.64366		O p = 0.01	0.00166	
0.00365		● p = 0.05		
0.11662			Bonferroni	
0.00166		Set significance	not significant):	

our tool allows the immediate application of the most commonly used multiple testing correction methods

- easy data upload: copy and paste *p*-values
- allows comparisons across adjustment methods
- suitable for all scientific disciplines

Acknowledgments

This project was supported by the National Research, Development, and Innovation Office, Hungary (PharmaLab, Grant No.: RRF-2.3.1-21-2022-00015). Otilia Menyhart was supported by the Janos Bolyai Scholarship of the Hungarian Academy of Sciences and the Hungarian Scientific Research Fund (Grant No.: OTKA FK147194). The support of ELIXIR Hungary (www.bioinformatics.hu) is acknowledged. The authors declare no conflict of interest.