

Changes in Mortality Rate Distribution and Associated Regional Factors at the Neighborhood Level in Seoul, South Korea: **A Comparative Analysis of Pre- and Post-COVID-19**

Joonsu Jang^{1,2}, Kisiju Trishna^{1,2}, Soojung Kim^{2,3}, Nawon Kim^{2,3}, and <u>Byung Chul Chun^{1,2,3}</u>

¹Korea University Graduate School, Seoul, South Korea, ²Korea University College of Medicine, Seoul, ³Graduate school of Public Health, Korea University, Seoul

- South Korea's age-standardized mortality rate (SMR) has steadily declined through 2021 despite the COVID-19 pandemic, but in Seoul, the country's capital, it has increased since the pandemic.
- The increase in SMR during the COVID-19 pandemic in Seoul varied widely by neighborhood.
- Hot spots of SMR during the COVID-19 pandemic were found in neighborhoods with low education levels and limited healthcare resources, while affluent neighborhoods that were cold spots before the pandemic remained cold spots.
- In policies to protect people's health and prevent deaths during a pandemic like COVID-19, regional prioritization and re-allocation of healthcare resources are essential.

BACKGROUND

- Seoul is the capital of South Korea and is a metropolis of 9.6 million people covering an area of 605.2 km². (Pop. Density: 15,93/ km²)
- South Korea's mortality rates have decreased since 2012. However, Among the 17 provinces nationwide, Seoul is the only province where mortality rates

RESULTS

have increased after COVID-19.

Figure 1. Age-standardized mortality rate (per 100,000 people) in South Korea and Seoul

• We aims to explore neighborhood-level mortality rates changes pre-/post-COVID-19 in Seoul using spatial clustering and to investigate regional factors affecting mortality rates differences.

METHODS

- Study variables
 - Standardized mortality rates (in 2019 and 2021)
 - Crude mortality rate difference: pre-/post-COVID-19 difference
- Study area: 425 neighborhoods (dong) in Seoul, South Korea
- Study period: 2019 and 2021 (pre-/post-COVID-19)

Figure 2. Regional distribution of age-standardized mortality rates (per 100,000) people) in 2019 (a) and 2021(b) in Seoul Hot Spot clusters Cold Spot clusters

Figure 3. Getis-Ord Gi* clustering of age-standardized mortality rates

Description of study variables

Table 1. List of study variables

Variables			
Outcome variables			
Standardi	zed mortality rates, 2019 & 2021		
Crude mortality rate difference (difference between 2019 and 2021)			
Explanatory variables			
Socioeconomic variables	Divorce (%) 2019 Single-person household (%), 2019 Low education attainment (%), 2020 High education attainment (%), 2020 Elderly population (%), 2019 Basic living security recipients (%), 2019 Elderly living alone (%), 2019		
Healthcare related variables	Health facilities per 100 people, 2017 Medical doctors per 100 people, 2017		
Statistical analysis			

(per 100,000 population) in 2019 (a) and 2021 (b) in Seoul

Table 2. Results of regional factors at the neighborhood-level for mortality rate difference, expressed as coefficients (95% credible interval).

Variablaa	Spatial model		
variables	iCAR	BYM	
Divorce (%)	6.1 (-52.1, 64.3)	14.6 (-37.9, 67.0)	
Single-person household (%)	1.6 (0.5, 2.7)	1.6 (0.9, 2.2)	
Low education attainment (%)	1.3 (-0.6, 3.2)	1.3 (1.1, 2.4)	
High education attainment (%)	1.9 (-1.7, 5.5)	1.9 (-0.2, 4.0)	
Elderly population (%)	7.3 (2.9, 11.8)	7.4 (4.8, 10.0)	
Basic living security recipients (%)	1.1 (-3.8, 6.0)	1.2 (-1.7, 4.0)	
Elderly living alone (%)	-3.0 (-10.9, 5.0)	-3.0 (-7.6, 1.7)	
Health facilities (per 100 people)	2.2 (-20.5, 25.0)	2.3 (-11.6, 16.2)	
Medical doctors (per 100 people)	-10.0 (-16.0, -4.0)	-10.1 (-13.6, -6.5)	
DIC*	4,972	2,197	

- Spatial autocorrelation test: Global Moran's I statistics
- Getis-Ord Gi* clustering: To detect the high-risk areas
- Bayesian spatial analysis - iCAR† and **BYM‡** model - Performed using INLA**

*AIC: akaike information criterion, *†iCAR: intrinsic conditional auto-regressive model,* **‡BYM:** Besag-York-Mollie model, **INLA: integrated nested Laplace approximation

The difference in mortality rates per Dong i $(i=1,\ldots,425)$ can be represented as Y_i , using a **BYM model** as follows:

- $Y_i \sim N(\mu_i, \sigma_i^2)$ where, $E(Y_i) = \mu_i$ and $V(Y_i) = \sigma_i^2$ $\mu_{i} = \alpha + \sum_{k} (\beta_{k} \times variables_{i,k}) + S_{i} + \varepsilon_{i}$
- $s_{1:425} \sim iCAR (W, \sigma_s^2)$ $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$

where,

- $Y_i = differences$ in mortality rate of Dong i
- μ_i = mean of Y_i

 σ_i^2 = variance of Y_i

- α = intercept
- β_k = regression parameters of each variable k
- s_i = intrinsic conditional auto-regressive term ε_i = random effect quantifying non-spatial variation

CONCLUSION

- Seoul's SMR increased overall during COVID-19, with significant regional variations in the increase.
- Factors associated with regional increases in SMR during the COVID-19 pandemic are low educational attainment, a high proportion of elderly people, a high proportion of households living alone, and a low number of physicians relative to the population.
- This study highlights the importance of identifying high-risk areas for mortality at the neighborhood level, which directly contributes to setting public health policy priorities.

ADDITIONAL KEY INFORMATION

- All authors have no conflict of interest to declare
- Contact:: chun@korea.ac.kr, c16329@korea.ac.kr

