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Abstract 
The Energy Release Rate (ERR) and the contact zone size for a fiber/matrix interface debond are 
studied for a thin-ply glass fiber/epoxy laminate. The main objective is to analyze the effect on the 
debonding process of the presence of a traction free specimen surface or an adjacent material, in the 
form of a stiffer UD ply or by considering it as part of a thick 90° layer, at different levels of fiber 
content. To this end, a model of Representative Volume  Element (RVE) subjected to different 
combinations of boundary conditions is proposed. It is found that the constraining effect of the 
adjacent ply favors at high fiber volume fractions the opening of small debonds (10 − 40°) for the 
same level of strain. The results agree well and provide a mechanical explanation to previous 
microscopic observations available in the literature [4].  
 
 
1. Introduction 
 
Thin ply composites represent today one of the most promising material for advanced applications in 
the aerospace industry and are attracting the interest of structural designers for use in mission-critical 
applications such as cryogenic tanks [1] and reusable space launchers' frames [2]. 
 
The experimental evidence on thin-ply laminates [3-6] confirms an earlier result on the influence of 
thickness and lay-up sequence on the strength and crack suppression behavior of FRP laminates, 
namely the existence of the so-called thin-ply effect and in-situ strength. At the end of 1970’s, the 
experimental investigation of Bailey and collaborators [7,8] pointed out the relationship between ply 
thickness and transverse cracking, by showing that reducing the thickness of an inner 90°-ply in a 
cross-ply laminate results in the delay and even suppression of transverse crack propagation [9]. They 
identified the fiber-matrix property mismatch, and in particular the difference in Poisson’s ratio, as the 
main mechanical driver of matrix cracks [10]. By investigating the micromechanics of transverse 
cracks, they observed that they originate as debonds or flaws at the fiber-matrix interface, which under 
increasing loads extend initially along the interface itself, then kink, coalesce and propagate as 
transverse cracks first through the thickness and finally through the width of the specimen [11]. 
 
Experimental evidence thus points to debonding at the fiber/matrix interface as the primary 
mechanism to investigate in order to achieve a better understanding about the initiation of transverse 
cracking and the potential of its suppression through an improved laminate design. It is paramount to 
this end to understand the process of fiber/matrix debonding, kinking and coalescence, as well as the 
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effect of ply thickness, non-uniformity of fiber distribution, material properties’ mismatch and thermal 
strains. Cohesive zone modeling (CZM) has been one of the numerical strategies of choice to model 
these phenomena, often coupled with an elasto-plastic behavior for the polymeric matrix [12,13]. The 
method provides the possibility of simulating the onset and propagation of transverse cracks starting 
from a virgin ply, and can be used to record virtual crack path and loading histories which can then be 
compared with macroscopic experimental tests [14]. However, several drawbacks exist that cast a 
serious doubt about its applicability. First and foremost, the bi- and tri-axial stress state observed in 
inter-fiber regions and the cavitation-like matrix failure taking place at or close to the fiber interface 
[15-17] do not agree with the adhesive-like failure mechanism described by the CZM. 
 
A second approach to the problem is the evaluation of the strain and stress state around the debond and 
consequent estimation of the Energy Release Rate (ERR) at the crack tip in mode I and mode II 
through the application of the Virtual Crack Closure Technique (VCCT) [18] and/or the J-integral 
method [19]. Its strength lies in the ability to provide direct comparisons of the magnitude of the effect 
on crack onset of different geometric, mechanical and thermal factors. However, unless coupled with a 
failure criterion as in [20], it has no predictive power regarding the direction of crack propagation and 
the size of the propagated crack. This approach was firstly used in the analytical treatment of the 
fiber/matrix interface problem in FRPC by Toya [21], and more recently in numerical analyses using 
the Boundary Element Method (BEM) [22] or the Finite Element Method (FEM) [23]. 
 
The recent advancements in thin-ply technology [2], where ply thickness can now be reduced to only 
2-4 times the diameter of the reinforcement, has given a novel practical relevance to the theoretical 
analysis of advantages and disadvantages of using thin plies to delay intralaminar cracking. In this 
work we will compare the ERR related to the fiber/matrix debond growth for a debonded fiber placed 
in three different locations: a) at the free surface of the UD layer; b) at the interface with a very stiff 
layer of different orientation; c) as a repeating element in a thick layer. To magnify the expected 
trends, in cases a) and b) we analyze an extremely thin ply with only one fiber in the thickness 
direction. The effect of fiber content on fiber/matrix debonding is analyzed through the evaluation of 
Mode I and Mode II ERRs at the debond’s crack tip using the Finite Element Method in conjunction 
with the VCCT and the J-integral method. Although extreme in its simplification, the model provides 
valuable insights of the constraining effect of adjacent plies and on the effect of fiber volume fraction, 
and thus on ply thickness. 
 
 
2. The Model 
 
In order to investigate the initiation mechanisms of transverse cracks, we focus our attention on the 
fiber/matrix interface and we apply the tools of Linear Elastic Fracture Mechanics (LEFM). We 
consider a 2-dimensional Finite Element (FE) model of a Representative Volume Element (RVE) 
consisting of a single row of glass fibers in epoxy matrix.  
 
Several fibers have debonds of the same size at the interface with the matrix, indicated in red in 
Figures 1-4. An interaction between debonds is expected at high fiber content (especially between the 
closest ones), but the interaction will be the same for all the three analyzed cases of the top and bottom 
surfaces’ constraints, which is the main subject for comparison in this paper. The selected 
configuration of debonds allows the selection of a Repeating Unit Cell (RUC) on which different 
surface constraints will be applied. 
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Figure 1. Schematic representation of a single “free” 90° ply with debonded fibers.  
 
 
The first of such configurations, depicted in Figure 1, represents the case of a single ultra-thin ply with 
only one layer of fibers in the thickness direction. The bottom and top surfaces are traction-free: free 
surface in the FEM model (case Free in results). The second layup considered (Figure 2) corresponds 
to a single inner ultra-thin 90°-layer bounded by stiffer and thicker 0° plies, which is not bending and 
has a constant strain in the x-direction (the inhomogeneity and damage in the 90°-layer has no effect 
on strain in the 0°-layer). It is modeled by assigning a constant unknown vertical displacement to 
account for the Poisson’s effect and a linear distribution of x-displacement on the top surface (case 
Constant v, linear u in results).  
 
 

 
 

Figure 2. Schematic representation of the embedded 90° ply bounded by thick UD sections.  
 
 
The final configuration, seen in Figure 3, represents a thick ply with fibers in square-packing 
arrangement in both the width and thickness direction. This last case is modeled by the application of a 
constant unknown vertical displacement on the top surface (case Constant v in results). 
 
Pure plane strain conditions in the y-direction are considered and both the glass fiber and the epoxy are 
assumed to be isotropic materials with properties reported in Table 1. 
 
 

Table 1. Material properties for glass fiber and epoxy. 
 
Material E [GPa] ν[-] 
Glass fiber 70.0 0.2 
Epoxy 3.5 0.4 
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An arc crack is placed at the fiber/matrix interface, referred to as the debond in this article, where the 
matrix is debonded from the fiber (represented in Figure 4 in the deformed state). The debond is 
characterized by its angular size, equal to  2∆𝜃 and indicated in blue in Figure 4, and its position 𝜃, 
taken as the angular position of debond’s mid point. The debond’s size is a free parameter, while its 
position 𝜃 is in this paper assumed equal to 0, i.e. a centered debond symmetric with respect to the x-
axis. At large sizes, the debond presents a so-called contact zone of angular size ∆Φ close to the crack 
tip, where the crack faces are in contact and only Crack Sliding Displacement (CSD) is present. Only 
half of the RUC is considered and symmetry conditions are applied along the x-axis to model the 
presence of the lower half. Uniaxial tension is applied to the RUC in the form of an applied constant 
strain of 1% in the longitudinal direction. 
 
 

 
 

Figure 3. Schematic representation of the repeating element in the thick 90° ply.  
 
 
The radius 𝑅 of the fiber is assumed to be equal to 1 𝜇𝑚 and the RUC’s dimensions are 2𝐿 ∗ 𝐿, where 
the reference length 𝐿 is governed by the fiber volume fraction 𝑉 and the fiber radius 𝑅 according to  

𝐿 =
1

2
𝑅ඨ

𝜋

𝑉
 (1) 

 
 

 
 

Figure 4. Schematic representation of the Representative Unit Cell (RUC) studied. 
 
 
The FE model is implemented and solved using Abaqus Standard [54]. The Virtual Crack Closure 
Technique (VCCT) [42] is applied to the evaluation of the Mode I energy release rate (ERR), 𝐺ூ, the 
Mode II ERR, 𝐺ூூ, and the total ERR, 𝐺்ை். The total ERR is also calculated by means of the J-
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integral method [43]. For the latter, the Abaqus built-in function is used; for the VCCT, an in-house 
Python routine has been developed. The model for a single fiber in an infinite matrix (𝑉 = 0.0079%) 
is validated against the results obtained in [24] using the BEM in the case of a single fiber. 
 
 
3. Results & Discussion 
 
As seen in Figure 5, the Mode I Energy Release Rate shows a strong dependence on fiber content. The 
peak value at 𝑉 = 60% is approximately 4 times the value at 20% and it is shifted towards lower 
debond’s sizes. For ∆𝜃 > 60 − 70°, Mode I ERR decays to zero signaling the emergence of the 
contact zone (see also Figure 7), where Crack Sliding Displacement (CSD) is the only component 
present. 
 
 

 
Figure 5. Evolution of 𝐺ூ with respect to debond’s size for the 3 models considered with 20% (left) 

and 60% (right) fiber content. 
 
 

 
Figure 6. Evolution of 𝐺ூூ with respect to the debond’s size for the 3 models considered with 20% 

(left) and 60% (right) fiber content. 
 
 
The effect of boundary conditions is less pronounced, although present. In particular, the free surface 
case presents always lower values of 𝐺ூ due to the ability of the matrix to comply locally, ability that 
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is prevented when the lateral movement of the surface is constrained by the adjacent material. This is 
an interesting result, because one would expect that closeness of the free specimen’s surface would 
facilitate the debond growth. For the RUC (thick 90°-ply) at high fiber content, the value of 𝐺ூ is 
higher as it reflects the presence of another identically debonded fiber on top of the analyzed (Figure 
3), which interact with each other at higher 𝑉 (i.e. lower RUC’s thicknesses). 
 
The mode II ERR (Figure 6) is on the other hand less sensitive to the change in fiber content, and thus 
on the presence of adjacent material. Changes in value do not exceed 15 − 20% for any combination 
of fiber content and boundary conditions. As for mode I, increasing the fiber content enhances the 
effect of the adjacent material on crack initiation. When only the vertical displacement is constrained, 
mode II ERR is reduced by 15 − 20%; when the horizontal displacement is also imposed, a similar 
reduction in magnitude occurs but a longer plateau of maxima appears. The presence of a free surface 
favors Mode II, as it is shown by the approximately 20% increase in the value of 𝐺ூூ for a thinner ply. 
 
 

 
Figure 7. Evolution of contact zone size ∆Φ with respect to debond’s size for the 3 models considered 

with 20% (left) and 60% (right) fiber content. 
 
 
The observed results can be explained in geometric and mechanical terms: under transverse tension, 
the matrix will contract toward the symmetry line more than the fiber due to the mismatch in Poisson’s 
ratio. When the surface is free, for ∆𝜃 > 45 the applied tension generates a radial Crack Opening 
Displacement (COD) equal to or smaller than the one created by the Poisson effect (opposite in sign, 
i.e. closing the crack), thus leaving the crack closed. The tangential components are instead coherent 
and sum up favoring a mode II crack initiation. When the vertical displacement is constrained, the 
COD component due to the Poisson’s effect is reduced, thus favoring mode I at higher debond’s size. 
The transition to a closed crack with a contact zone is thus delayed, but after the onset of the latter the 
behavior is unchanged. At larger debond’s sizes, in fact, the main driver of crack sliding is the applied 
tension and not the Poisson effect, which induces displacements approximately normal to the interface 
and consequently does not have a relevant tangential component anymore. When an horizontal 
displacement is imposed to the RUC’s surface however, it reduces at higher debond’s sizes (∆𝜃 >
60°) the constraining effect of the bonded fiber/matrix interface in the near-tip region by forcing the 
matrix to follow the average applied tensile displacement. This, in turn, translates in a higher local 
tangential component of the crack faces displacement, which corresponds to higher values of 𝐺ூூ with 
respect to the other two combinations of boundary conditions. This favors mode II and creates the 
plateau seen in the picture on the right in Figure 6. The effect of fiber content is on the other hand 
explained by the de Saint Venant’s principle: the lower the fiber content, the bigger the RUC and the 
less the debond is affected by perturbations in the elastic fields caused by the conditions at the 
boundary. 
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This mechanical explanation is confirmed by the evolution of the contact zone size (Figure 7). For low 
fiber content, the debond is not significantly affected by perturbations caused by boundary conditions 
and its evolution is thus independent from the latter. For high 𝑉, the constraing effect of adjacent 
material causes a delay of 30 − 40°  in contact zone onset and a decrease in size of approximately 40°. 
 
The numerical results presented agree and explain the microscopic observations of Saito & al. [4]. 
Working with [02/90n/02] laminate, with n = 1,2 and 4, they observed that thin plies favored the onset 
of debonds and their opening, which happened at strains lower than for thick plies. Coalescence of 
debonds and through-the-thickness propagation were instead delayed and even suppressed in the 
thinnest laminae. 
 
 
4. Conclusions 
 
The initiation mechanisms at the fiber/matrix interface in thin-ply laminates under transverse tensile 
strain have been investigated evaluating Mode I and Mode II ERRs and the contact zone’s size. Three 
different cases have been considered: a) a debonded fiber close to the specimen free surface; b) a 
debonded fiber in the middle of a thick 90°-layer; c) a debonded fiber in the proximity of the interface 
with a stiff ply. These three configurations are modeled by different combinations of boundary 
conditions: case a) corresponds to a free surface in FEM model; in case b) a constant unknown vertical 
displacement is applied to upper surface; case c) is modeled by the concurrent application of a 
constant unknown vertical displacement and a linear horizontal displacement. Several values of fiber 
volume fraction have been evaluated, and the two extreme cases of 𝑉 = 20% and 𝑉 = 60% have 
been reported and analyzed to exemplify the trends found. 
 
In accord with de Saint Venant’s principle, it has been shown that the main consequence of ply 
thickness, controlled in the model by the fiber content, is to enhance the effect of the conditions 
applied to the boundary. This translates in a strong increase in the magnitude of mode I ERR, which is 
dominated by the applied uniaxial tensile displacement. The presence of a stiff material adjacent to a 
thin ply reduces mode II ERR, delays the onset of the contact zone and drastically reduces the size of 
the latter. The increase in mode I ERR with the concurrent decrease in mode II ERR and contact zone 
size for a constrained thin ply means that opening of the debond is favored for the same level of strain. 
This result agrees well and provides a mechanical explanation to the microscopic observations 
reported in [4], where it was noted that fiber/matrix debonds in thin plies appeared at lower strain 
levels than in thick plies. 
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