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Abstract

The current study presents a workflow to import a fibre bundle structure of a non-crimp fabric based fibre
composite obtained by X-ray CT to a solvable 3D model in the finite element software ABAQUS. The
considered fibre composite is similar to that used for the load carrying parts of wind turbine blades, and
each layer of the non-crimp fabric contains fibre bundles oriented in the 0°, 90°, and +45° directions.
The 3D fibre bundle geometry is first segmented in the software AVIZO and then imported to Geomagic
Wrap where the geometry is smoothened and converted into a nurbs surface that can be imported into
ABAQUS. The resulting stress distribution is qualitatively compared to previous experimental observa-
tions and discussed.

1. Introduction

Due to their high specific stiffness and strength along with high toughness and great fatigue properties
fibre composites are increasingly replacing the more conventional materials such as steel and aluminium.
Particularly within the wind, automotive and aerospace industries fibre composites are increasingly being
used for structural parts. For such applications it is important to understand the behaviour of the material
under various loading conditions to make sure the parts do not fail prematurely. However, at the same
time it is important not to heavily over-dimension the structure, as it will increase the cost. In the case
of wind turbines, the main spars in the blades that mainly carry the gravitational and wind loads are
made from uni-directional (UD) non-crimp fabric (NCF) based fibre composites and experience a high
number of fatigue load cycles during the blade life-time of around 20-30 years. The current methods
for determining the life-time of these materials are based on approaches adopted from metals despite the
damage mechanisms of observed fibre composite under fatigue loading (e.g. [1H3]]) being considerably
different. The UD NCF based fibre composites used for wind turbine blades experience complex damage
mechanisms during fatigue loading [4-7]], which is highly dependent on the local variation of the fibre
bundle structure [8]]. Therefore, it is important to establish modelling methods able to take into account
the actual fibre and bundle structure to ensure realistic results.

One possible way to model the actual fibre bundle structure in 3D is to extract the 3D structure from X-ray
computed tomography (CT) images and carry out finite element modelling (FEM) using the extracted
geometry (X-ray CT based modelling). Although few, studies have been carried out on this subject
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both on the fibre [9] [10] and bundle [11-17] scales. Naouar et al. considered a 2D [12]] and 3D [13]]
woven fibre composite and used various image analysis techniques based on the structure tensor and a
homogenisation parameter, respectively, to segment the fibre bundles. It was found that the established
model using the real fibre bundle structure gave results closer to experiments than a model using a
perfect pattern generated by TexGen [12]. Although carried out for woven fabrics rather than UD NCFs
considered in the present study, these studies also confirm the importance of considering the actual
bundle structure as highlighted by the authors and others through experimental studies [4-6), (8, 18]
Nevertheless, there are cases where automatic segmentation approaches will not work well or where it
is useful to compare the results obtained by automatic approaches to other methods. Particularly for the
considered material, the fibre bundles are touching one another making them challenging to separate.
Thus, the current study presents one possible approach to successfully transfer a 3D X-ray geometry to a
solvable ABAQUS model by means of commercially available software. The main focus of the current
work is on the approach itself, however the stress distribution obtained by modelling the real fibre bundle
structure by the presented approach is also shown and qualitatively compared to experiments.

2. Material and methods
2.1. Composite material

The considered material is a UD NCF based fibre composite commonly used for the main load carrying
parts of wind turbine blades, similar to that used in [6]. This type of fibre composite consists of layers
of non-crimp fabrics made up from fibre bundles mainly oriented in the direction of the load, but with
around 10% differently oriented (off-axis) supporting backing fibre bundles present. Fig. [Th shows a
schematic of one layer of fabric. For further details on the material system, the reader is referred to [6],
where the same material is explained in greater detail. Fig. [Tb shows an example of UD fibre fractures
observed at a cross-over region of the backing fibre bundles touching a UD fibre bundle. This type
of region is considered as being critical for damage initiation and progression [6} [18], as will also be
discussed in he results section.

Cross over regions
touching a UD fibre 47300 cycles 77300 cycles

a) One UD fabric layer b) Example of damage progression
observed by ex-situ X-ray CT

Figure 1. Schematic of (a) structure of one layer of UD fabric and (b) UD fibre fracture accumulation
during fatigue loading near a contacting cross-over region of the fibre bundles [6].

2.2. X-ray computed tomography
To obtain the actual fibre bundle structure present inside the composite material, X-ray CT experiments

were carried out. The experiments were carried out on a Zeiss Xradia Versa 520 at 60kV with a source-to-
sample distance of 26mm and a detector-to-sample distance of 150mm resulting in a field of view (FoV)
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of around 10x10x10mm. The size of the detector was 2000x2000 pixels with 0.4x optical magnification
and the experiments were carried out with a binning of 2 resulting in a pixel size of ~10um. The number
of projections were 3201 and the exposure time was 3.5s resulting in an approximate scan time of ~4.5h.
Although it is desirable to consider as large a region as possible, the image resolution decreases with
increasing FoV size and it is therefore a compromise. In the current case, a FoV of 10x10x10mm was
chosen to have sufficient resolution to visually distinguish between the different fibre bundles while still
considering a relatively large region. Data conversion and visualisation was done in AVIZO 9.0.0 by
FEIL

2.3. Segmentation and modelling method

In this section the steps that are part of the overall workflow of getting from the X-ray CT data to the
finite element model are explained. In the current study, focus has been on using commercial software
and it was chosen to use AVIZO, Geomagic Wrap, and ABAQUS. Fig. [2]illustrates the steps of the
established workflow that will be explained in more detail in the following sections.

2. Smoothing
1. Segmentation |EXPort as DXF and fitting Export by STP 3. Meshing
: in AVIZO nurbs surfaces ——> and modelling
in Geomagic in ABAQUS
Wrap
o9 2
Qe . .
oo FEI Geomagic Wrap DS SIMULIA
part of Thermo Fisher Scientific Abaq us

Figure 2. Workflow for getting from the X-ray CT data to an ABAQUS model

2.3.1. Fibre bundle segmentation in AVIZO

The first step is to segment the fibre bundles. In other words, to place a colour mask on top of the relevant
parts of the image representing each of the regions one wants to separate from one another. In this case,
we want to separate the fibre bundles from the matrix and the fibre bundles oriented in different directions
from one another. This was done by slicing through the volume in AVIZO and for each bundle manually
painting on top of the cross section in some of the slices. As painting in every single slice would not be
feasible time-wise, this was only done for a number of slices and then AVIZO was used to interpolate
between the marked regions. This is also illustrated in Fig. [3]

The regions where the backing fibre bundles and the UD fibre bundles touch one another have been
found to be significantly more critical [4-6) 8] 18] than the contact between two UD bundles. Therefore,
the backing fibre bundles were segmented individually, whereas the UD fibre bundles were segmented
layer-by-layer. If necessary, it would also be possible to segment all fibre bundles individually. A video
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Interpolate
—_—

Figure 3. Example of interpolation between segmented slices of fibre bundle in AVIZO

demonstrating the final segmentation can be found online [19]. To export the segmented data, surfaces
were generated for each backing layer direction (+45, -45, 90) and each UD layer, where after each
surface could be exported in the DXF format. This format was chosen since other surface formats such
as STL provided surfaces with holes at contacting regions. Details on how to do so in AVIZO can be
found as supplementary material available online [19].

2.3.2. Smoothing and conversion in Geomagic Wrap

One way convert the segmented data into a type importable to ABAQUS is to use the software Geomagic
Wrap as an intermediate step. Geomagic Wrap allows to smoothen and repair the surfaces and then fit
a grid of nurbs surface patches to the surface. The overall workflow for fitting nurbs surfaces to the
geometry is demonstrated in Fig. [ This step may require some additional manual work to make the
surface fit work properly depending on the complexity of the surface. In the case of the fibre bundles it
was necessary to create some partitions and do some final adjustments to the patches manually. More
details on how to import the DXF surfaces, fit nurbs surfaces, and export to STP for import in ABAQUS
can be found as supplementary material online [19].

add

a) Raw b) Smoothed c) Patches d) Surface fit
Figure 4. Example of workflow in Geomagic Wrap

2.3.3. Import of geometry and modelling in ABAQUS

The created STP files for each UD bundle layer and each direction of the backing fibre bundles were
imported to ABAQUS as separate parts. Fig. [5]shows a schematic of the overall workflow in ABAQUS.
In the current study, the meshing refining was done by edge seeds as patches generated in Geomagic
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Wrap becomes surfaces connected by edges when imported into ABAQUS (see Fig. [Bh). Thus, the
refined mesh regions are already defined when the patches were generated in the Geomagic Wrap step.
However, it would be possible to remesh the geometry subsequently in ABAQUS as well if desired.
Quadratic tetrahedral elements (C3D10) were used for the current model, and the mesh for the fibre
bundles and the matrix block can be seen in Fig. [5p and [5k, respectively. The total number of elements
for the model was 174331.

a) Imported bundles b) Meshed bundles c) Meshed matrix block

Figure 5. Example of workflow in ABAQUS

The FEM analysis was carried out with the material properties of E,,, = 3.3 MPa, v,, = 0.3 for the matrix
and E; = 30 GPa, E», = E3 = 9.8 GPa, G| = G135 = Gy3 = 2.8 GPa, v = 0.3 for the fibre bundles.
All the materials were assumed to be linear elastic. Local coordinate systems were used to align the
stiffness direction of the fibre bundles into their respective overall fibre orientation directions (0°, 90°
and +45°) with E in the length direction. It would be possible to obtain more precise material properties
for the fibre bundles by measuring the fibre volume fraction inside the fibre bundles and using the rule
of mixtures, however this has not been done in the current study. The fibre bundles were modelled as an
embedded region into a block of matrix. The matrix block was fixed in one end and a displacement load
of 0.1% strain was applied to the other resulting in uni-axial loading in the 0° direction.

3. Results

Fig. [6] shows the stresses in the axial direction where the matrix has been hidden for clarity. Some
edge effects can be seen in the ends of the UD fibre bundles as a result of the boundary conditions (load
induced on the surrounding matrix block). However, the stresses in the UD fibre bundles are seen to
quickly stabilise when moving away from the edges. Fig. [T and [7b shows the stress state with the top
UD bundle layer removed, with and without the backing layer, respectively. It can be seen from Fig.
[7h that the stresses locally are higher in a band across the UD fibre bundles. The location of this band
correlate well with the location of the backing fibre bundles (Fig. [7b). Hence, the presence of the backing
fibre bundle seems to locally affect the stress state in the UD fibre bundles even for the simple uniaxial
tension load case considered in the current study. As discussed earlier, fractures of the load carrying
UD fibres observed during fatigue loading has been experimentally shown to initiate locally close to the
intersecting regions of the supporting backing fibre bundles and a UD bundle. The locally higher stresses
seen in Fig. [/p could be part of the explanation of why the fatigue damage initiate and progress in these
regions.

In addition to the edge effects induced by the load application approach, edge effects are also observed
in the width direction as marked by arrows in Fig. [7a. Due to the resolution limitations, the considered
volume (10mm? does not include the full width of the test specimen (15mm). Therefore, the stresses at
the edges seen in Fig. [7] will not be exactly the same as in if the test specimen was subjected to tensile
loading. It is also seen that although a relatively large region is considered, it is not large enough to
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Edge effects
[

Figure 6. Axial stress distribution of the full volume (matrix hidden)

Edge effects

a) Top UD layer and backing layer b) Top UD layer hidden
hidden

Figure 7. Stress distributions showing the local effect of the backing fibre bundles

be representative of the backing bundle structure. These considerations highlights the importance of
considering a significantly large volume if the model should be representative as part of a multi-scale
model approach.

In principle, it would be possible to stitch together several X-ray CT data-sets both in the axial and width
directions to obtain a larger volume at the same resolution. However, using the current approach the
number of elements will become too high and the time necessary for manual segmentation and surface
fitting work will become unfeasible. Therefore, there is a future need to establish automatic segmentation
and meshing method to extract these fibre bundle structures from X-ray CT data. Aside from saving time
on manual work, automatic methods would also eliminate the personal bias introduced by manually
choosing the regions belonging to each fibre bundle. In relation to the model becoming increasingly
heavy when considering a larger volume, automatic segmentation methods are likely to make it easier to
create a more effective mesh e.g. by sweeping the mesh along the fibre directions and locally refine the
mesh at sensitive regions (see also Blinzler et al.[20]). Nevertheless, the current work serves as a good
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starting point and comparison base for future improved approaches for X-ray CT based modelling and
used a free segmentation making it applicable to most geometries. For additional future work, it would
be interesting to include contact between the fibre bundles and the local fibre orientation as part of the
material properties in the analysis.

4. Conclusions

The present study presented an approach to import a fibre bundle structure of a composite material from
3D X-ray CT data into the finite element software ABAQUS. The stress distribution with a main focus on
stress concentration areas was qualitatively compared to experimental observations of previous studies,
and the stress concentrations were found to be in accordance to locations of load carrying fibre fracture
initiation. The presented approach has a high degree of freedom as it can apply to most geometry types,
however as it is quite time consuming and based on subjective judgment, there is a future need for
automatic segmentation and import workflows to be developed.
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