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Abstract 
Tremendous efforts have been put into the study of structural integrity and the understanding of failure 
mechanisms in composites. Geometric non-linearity, receiving few attention in coupon-level 
simulations, can play an important role in the design and analysis of larger structures. This paper aims 
at extending the recently-developed Floating Node Method for damage analysis of laminated composites 
subjected to large deformations. The kinematics of strong discontinuities including interfacial 
delamination and matrix cracks are explicitly described in a geometrically nonlinear framework. 
Interactions between these two kinds of failure patterns are enabled through enriched elements equipped 
with floating nodes. To verify this proposed method, buckling-induced delamination and low-velocity 
impact damage are modelled, the results of which show good agreement with results from literature.  
 
 
1. Introduction 
 

Damage modelling and failure prediction are essential for the application of composites. They have 
been extensively studied with continuum damage methods, in which the effect of diffuse cracks is 
smeared out over the continuum. Recently, high-fidelity simulation has been achieved with discrete 
crack methods, and physical cracks such as matrix cracking and delamination can be captured explicitly 
by including crack kinematics in finite element formulations [1-3].  

 
Chen et al. proposed Floating Node Method (FNM) for modelling multiple discontinuities in a finite 

element, which can also capture the interaction between matrix cracking and delamination [3]. This 
method has been further developed for the simulation of tensile failure and delamination migration [4, 
5]. In this work, a 2D geometrically nonlinear formulation of the FNM is presented for modelling 
damage growth in composites undergoing large displacements. Enriched solid elements and cohesive 
elements are developed with consideration of the displacement jump in the deformation map and 
discontinuities in other kinematics. The matrix cracks within 90-degree plies and interfacial 
delamination between plies are simulated with a mixed-mode cohesive model. The proposed 
formulation are verified with two numerical examples involving buckling-induced delamination and 
low-velocity impact, respectively.  
 
 



ECCM18 - 18th European Conference on Composite Materials  
Athens, Greece, 24-28th June 2018 2 

T.E. Tay, J. Zhi 
 

2. FE formulation of strong discontinuities in matrix cracking and delamination 
 
2.1.  Governing equations 
 

Considering a solid ߗ with displacement boundary ∂௨ߗ, traction boundary ∂௧ߗ and cohesive cracks 
  :the governing equations can be expressed with respect to the reference configuration ,߁

DIV ࡼ + ߩ = ࢛̈ߩ in  ߗ ⁄߁   

࢛ = ෝ࢛ on ∂௨ߗ   

ࡼ ∙ ࡺ = ࢀ on ∂௧ߗ   

ࡼ ∙ ିࡺ = ࡼ− ∙ ାࡺ = ࢀ on  ߁  

(1) 

where ࡼ is the first Piola-Kirchhoff stress, B is the body force and ࢀ is the cohesive traction. The weak 
formulation of Eq. (1) is given as:  

න :ࡼ Grad ܸ࢛݀ߜ
ఆబ ௰బ⁄

+ න ࢉࢀ ∙ ܣ݀⟦࢛ߜ⟧
௰బ

= න )ߩ − (࢛̈ ∙ ܸ࢛݀ߜ
ఆబ ௰బ⁄

+ න ࢀ ∙ ܣ࢛݀ߜ
பఆబ

 (2) 

The second Piola-Kirchhoff stress S is introduced and Eq. (2) can be reformulated as:  

δࣱ = δ ୩ࣱ୧୬ + δ ୧ࣱ୬୲ + δ ୡࣱ୭୦ − δ ୣࣱ୶୲ = 0 (3) 

where 

δ ୩ࣱ୧୬ = න ࢛̈ߩ ∙ ܸ࢛݀ߜ
ఆబ ௰బ⁄

 

δ ୧ࣱ୬୲ = න :ࡿ ܸ݀ࡱߜ
ఆబ ௰బ⁄

 

δ ୡࣱ୭୦ = න ࢉࢀ ∙ ܣ݀⟦࢛ߜ⟧
௰బ

= න ࢉ࢚ ∙ ܽ݀⟦࢛ߜ⟧
௰

 

δ ୣࣱ୶୲ = න ߩ ∙ ܸ࢛݀ߜ
ఆబ ௰బ⁄

+ න ࢀ ∙ ܣ࢛݀ߜ
பఆబ

 

(4) 

The constitutive equations include the elastic orthotropic behavior for bulk layers and cohesive behavior 
for matrix cracks and interface cracks. Rankine criterion is adopted to evaluate the fracture of the bulk 
element and also the crack direction .  
 
2.2.  Enriched solid elements and enriched interface elements 
 

The domain ߗ is discretized by ݊_௦ solid elements and ݊_ cohesive elements. Discretization of 
the weak formulation is given as:  

ࡾ்ࢊࢾ = 0 → ࡾ = ,௦ࡾ)ࣛ (ࡾ = 0 (5) 

where ࢊ denotes nodal displacement and ࡾ௦, ࡾ are residuals related to solid elements and cohesive 
elements, which are written as:  

௦ࡾ = ࣛୀଵ
_ೞ ቆන ̈ࢊܸ݀ࡺ்ࡺߩ

ఆబ


+ න 
்{ࡿ}ܸ݀

ఆబ


− න ܸ݀ࢀ்ࡺ
பఆబ


ቇ (6) 

and 
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ࡾ = ࣛୀଵ
_ ቆන ்ܸ࢚݀ࡸ

௰
ቇ (7) 

where ࡺ, 
 and ࡸ are finite element matrices.  

 
Once Rankine criterion is satisfied, the crack direction determines the location of floating nodes and 

the solid element is partitioned into several sub-elements, one scenario of which is shown in Fig. 1 (a). 
The residual of this enriched solid element can be given as the assembly of sub-elements:  

௦ࡾ
 = ࣛ ቀࡾ௦

|
ఆబ

(భ) , ௦ࡾ
|

ఆబ
(మ) , ࡾ

|௰ቁ (8) 

When crack reaches the edge of an interface element as illustrated in Fig. 1 (b), the interface element is 
also partitioned in a similar manner to ensure that the interaction between intra-ply crack and inter-ply 
crack is accurately captured. The residual is expressed as:  

ࡾ
 = ࣛ൫ࡾ

|௰ഥ(భ) , ࡾ
|௰ഥ(మ)൯ (9) 

 
 

(a)  (b)  
 

Figure 1. (a) Enriched solid elements; (b) Enriched cohesive elements.  
 
 
3. Numerical implementation 
 

A compact form of FE equations can be written as: 

̈ࢊࡹ + (ࢊ)୧୬୲ࡲ + (ࢊ)ୡ୭୦ࡲ − ୶୲ୣࡲ = 0  (10) 

where ࢊ is nodal displacement, ࡹ is the global mass matrix and ࡲ is global force vector (“int”: internal 
force in solid elements; “coh”: internal force in cohesive elements; “ext”: external force). Implicit time 
integration with a Hilber-Hughes-Taylor (HHT) operator is adopted to solve this dynamic problem. The 
equation to be solved at step tn+1 is given as:  

(ାଵࢊ)ࡾ = ାଵ̈ࢊࡹ + (1 + (ାଵࢊ)୧୬୲ࡲൣ(ߙ + (ାଵࢊ)ୡ୭୦ࡲ −  ୶୲,ାଵ൧ୣࡲ

(ࢊ)୧୬୲ࡲൣߙ− + (ࢊ)ୡ୭୦ࡲ − ୶୲,൧ୣࡲ = 0  
(11) 

Substitute the expression of ̈ࢊାଵ by the Newmark formula, Eq. (11) can be written with ࢊାଵ as the 
only unknown variable and the linearization of the residual in Eq. (11) is computed as:  

ࡾ ቀࢊାଵ
() ቁ + ࡾࣔ

ࢊࣔ
ቚ

శభࢊ
(ೖ) ାଵࢊ∆

() = 0 (12) 

where k is the iteration number and the tangent stiffness matrix is given as:  
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ࡾࣔ
ࢊࣔ

= ࡹ
ఉ௧మ + (1 + (ߙ ቀడࡲ౪

డࢊ
+ డࡲౙ

డࢊ
ቁ (13) 

where ߙ and ߚ are numerical parameters used in the HHT method. The displacements can be updated 
as ࢊାଵ

(ାଵ) = ାଵࢊ
() + Δࢊାଵ

() . Inertial term can be ignored if a quasi-static problem is solved.  
 
 
4. Numerical examples 
 
4.1.  Buckling-induced delamination 
 

The first problem studied is buckling-induced delamination posed in [6], as illustrated in Fig. 2. Two 
composite beams with predefined cracks are loaded by a horizontal rightward displacement u. Buckling 
is triggered by a small displacement u0, which introduces an initial imperfection for post-buckling 
analysis. Subsequently, mode-I delamination propagates along the interface with the opening of the two 
arms of the buckled beam. Geometric parameters and material properties are listed in Table 1.  
 
 

 
 

Figure 2. Composite beam with initial cracks (a) case-1, (b) case-2.  
 

Table 1. Geometric parameters and material properties [6].  
 

Geometric parameters  Material properties  
L (mm) 20 E1 (GPa) 135 
2h (mm) 0.4 G13 (GPa) 5.7 
w (mm) 1 ݐ

 (MPa) 50 
a0 (mm) 10 GIC (KJ/m2) 0.4 

- - K (N/mm3) 106 
 
 

The beam is modelled with enriched solid elements and cohesive elements for 0-degree ply and 
interface, respectively. A mesh size of 0.05 mm is chosen and displacement control is used during 
simulation. The initial perturbation displacement is 6×10-4 mm. Afterwards, a horizontal displacement 
is imposed and reaction force P can be evaluated. For case-1, four fracture energy values (GIC=0.2, 0.4, 
0.8, 1.6 N/mm) are studied. The load-displacement curves are plotted in Fig. 3 (a) and compared with 
results given in [6]. As shown in Fig. 3 (a), the load P increases a lot initially while the deflection at 
point ‘A’ remains small. With the onset of buckling, deflection starts increasing but the force remains 
the same. Finally, the delamination propagation causes the load drop. The result of case-2 in Fig. 3 (b) 
is similar but the peak load is larger and the deflection is smaller, as shown in Fig. 3 (c) and (d).  
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Figure 3. Response curves (a) case-1, (b) case-2; Deformation configurations (c) case-1, (d) case-2.  
 
 
4.2.  Low-velocity impact damage 
 

In the second example, a carbon fiber reinforced composite beam is impacted by a cylindrical head 
[7] and the experimental setup is given in Fig. 4. The ply sequence of the laminate is [05/903]s. The size 
of the beam is 100 mm×17 mm×4.8 mm and the diameter of the impacter is 40 mm. The impact analysis 
is simplified as a two-dimensional case, as shown in Fig. 4 (b). A half FE model is adopted considering 
symmetric boundary conditions. The impactor is discretized with 2D rigid elements and the mass for 
this half model is 392.5 g. Each ply is modelled with a single enriched solid element through the 
thickness and two interfaces are modelled with enriched cohesive elements. 0.25 mm mesh size is used 
along the length of the beam. Contact pairs are defined between the beam and the impactor, on which 
an initial downward velocity v0=4.43 m/s is imposed.  
 
 

Table 2. Material properties used in the simulations.  
 

Solid element  Cohesive element  
E11 (GPa) 135 K (N/mm3) 106 

E22=E22 (GPa) 9.2 ݐ
=ݐ௧

 (MPa) 105 
G12=G13 (GPa) 5.5 SL (MPa) 80 

G23 (GPa) 4.5 GIC (KJ/m2) 0.26 
v12=v13 0.30 GIIC= GIIIC (KJ/m2) 0.84 

v23 0.45 - - 
 - - 1780 (kg/m3) ߩ
fn (MPa) 60 - - 
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Figure 4. (a) Experimental setup [7]; (b) Numerical model. 
 
 

The force-displacement curve is given in Fig. 5 (a). Periodic oscillations firstly occur during the 
initial elastic loading. When the curve reaches the point ‘A’, several diagonal matrix cracks initiate in 
the 90-degree plies as both shown in the experiment and simulation results in Fig. 5 (b). As caused by 
transverse shear stress, these cracks are usually denoted as “shear cracks”. The location of these matrix 
cracks varies between 18.75-21.25 mm, close to experimental observations with an average distance 
18.1 mm. The average angles between the crack and horizontal line in experiment and simulation are 
49o and 45o, respectively. Shortly after the crack initiation, the load drops suddenly to almost zero at 
point ‘B’. The lower interface crack propagates away from the center while the upper one propagates 
toward to the impact point and significant crack openings can be observed. After point ‘B’ in Fig. 5 (a), 
the contact force increases again, during which larger fluctuations can be observed as a result of the 
delamination and matrix cracks. When the residual kinetic energy of the impactor is consumed 
completely, the impactor starts rebounding and contact force decreases gradually.  
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Figure 5. Results from simulation and experiment [7] (a) load-displacement curves, (b) failure 
patterns at point ‘A’ and ‘B’.  

 
 
5. Conclusions 
 

In this presentation, the Floating Node Method for modelling matrix cracking and delamination in 
composite laminates in the large deformation range was developed. To verify the proposed method, two 
representative numerical examples were given. The first example shows a verification of the formulation 
in modelling buckling problems with geometric non-linearity. Buckling initiates, followed by 
delamination propagation due to transverse deformation. The second example examines the capability 
of this method in modelling coupled dynamic failure mechanisms in composites subjected to low-
velocity impact. Diagonal matrix cracks are firstly observed. Delaminations along the upper and lower 
interfaces are then induced and propagate in opposite directions.  
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