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Abstract 

Cohesive Element (CE) is a well-established finite element for fracture, widely used for the modelling 

of delamination in composites. However, the computational time of CE-based method is prohibitive. 

This is because the steep and non-smooth stress gradient in the cohesive zone requires a very fine 

mesh. In this context, a new type of CE is here proposed, aiming to loosen the mesh constraint and 

reduce the computational time. It uses a higher-order interpolation of the displacement field with 

rotational degree of freedom and an adaptive integration scheme based on the status of the element. 

The proposed CE has been validated through comparison with benchmark solutions of delamination in 

Mode I, Mode II and Mixed-Mode cases, and has demonstrated superior performance than standard 

CE in computational efficiency while retaining a high level of accuracy. 

 

 

1. Introduction 

 

CE, which is based on CZM [1, 2], is one of the most popular methods for the modelling of 

delamination. CZM assumes that traction exists between the crack surfaces. This traction is a function 

of the crack opening and a damage variable which represents the loss of stiffness. Camanho et al. 

developed the CE which has been widely adopted to model delamination in composites [3]. Turon et 

al. subsequently refined their formulation by defining a thermodymically consistent damage model to 

ensure congruity between damage initiation and propagation [4]. These CEs use linear shape functions 

to interpolate the displacement field, and hence also the crack opening. The main limitation of the 

linear CEs lies in the restriction on the element size to ensure solution accuracy [5, 6, 7, 8, 9, 10, 11, 

12, 13]. A steep and non-smooth stress gradient is present in the cohesive zone (Figure 1), and the 

mesh must be dense enough to catch the stress variation within it. In general, there needs to be at least 

three elements within the Cohesive Zone Length (CZL) to capture the stress gradient [7, 3, 5]. During 

crack propagations, the cohesive zone moves, thereby extending this constraint to all the CEs. 

 

The mesh constraint limits the application of CEs on large-scale structures. Several solutions to tackle 

this issue have been proposed by different authors. Turon et al. lowered the strengths of the CE to 

enlarge the CZL, thereby allowing larger elements to be used [14]. Yang et al. [8] and Do et al. [11] 

proposed a sub-domain Gaussian integration scheme for first-order CEs. Alvarez et al. introduced a 6-

node 2D CE to interpolate the displacement field with quadratic shape functions [13]. Samimi et al. 

enriched the standard linear shape functions with triangular bilinear function to adaptively model the 

moving cohesive zone [15]. Guiamatsia et al. employed the analytical solution of the displacement 

field for a beam on elastic foundation under Mode I loading as enrichment functions to the CE shape 

functions [16].  Lu et al. used the floating node method to adaptively partition a large linear CE into 

small sub-CEs when the cohesive zone is passing through [17]. 
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Figure 1. Normal stress distribution near the crack tip in a Double Cantilever Beam test. 

 

 

2. Proposed Method 

 

2.1 Displacement interpolation 

 

 
 

Figure 2. Visualization of un-deformed (left) and deformed (right) configuration of the proposed CE. 

 

 

 
Figure 3. Application of the proposed CE together with EB beam elements. 

 

 

In this work, a new third-order CE with rotational degree of freedom is proposed. It is designed to be 

used between Euler-Bernoulli (EB) beam elements. Figure 2 depicts the proposed CE. Each node 

possesses three degree of freedom, two translational and one rotational. The rotational degree of 

freedom ensures compatibility with the EB beam elements and the 𝐶1 continuity of the displacement 

field between adjacent CEs. The displacements of the top and bottom edges (subscripted by ‘top’ and 

‘bot’, respectively) of the new CE are described by Equations 1 and 2, respectively: 
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𝑢top(𝜂) = 𝑢top
s (𝜂) −

ℎtop

2
sin(𝜃top) 𝑣top(𝜂)  =  𝑣top

s (𝜂) +
ℎtop

2
[1 − cos(𝜃top)] (1) 

   

𝑢bot(𝜂) = 𝑢bot
s (𝜂) +

ℎbot

2
sin(𝜃bot) 𝑣bot(𝜂)  =  𝑣bot

s (𝜂) −
ℎbot

2
[1 − cos(𝜃bot)] (2) 

 

where ℎ is the thickness of the beam, 𝑢s, 𝑣s and 𝜃 are the horizontal, vertical and rotational degrees of 

freedom of the neutral axis, respectively. 

 

 

2.2  Computing the openings 

 

With the above expressions of displacements for the top and bottom edges, the normal and shear 

openings of the proposed CE can be computed in the un-deformed frame of reference {𝜂, 𝜉} as 

follows:  

  

𝛅 = [𝑣top − 𝑣bot, 𝑢top − 𝑢bot]
T

 (3) 

 

As the CE is third order, the mid-line of the CE becomes curved after deformation. In this formulation, 

the openings are rotated with respect to the current orientation of the CE mid-line (𝛼Γ in Figure 2), i.e., 

they are expressed in the deformed frame of reference {𝜂d, 𝜉d}. Following the definition of the mid-

line, a parameterized description of the CE domain (Γ) in the un-deformed frame of reference can be 

obtained, from which the rotation angle 𝛼Γ can be calculated. The angle 𝛼Γ and the differential of the 

domain (dΓ) are: 

 

𝛼Γ(𝜂) = arctan (

𝜕𝛤𝜂

𝜕𝜂
𝜕𝛤𝜉

𝜕𝜂

) dΓ(𝜂) = √(
𝜕𝛤𝜂

𝜕𝜂
)

2

+ (
𝜕𝛤𝜉

𝜕𝜂
)

2

d𝜂 = 𝐽 d𝜂 (4) 

 

Once 𝛼Γ is obtained, the opening can be rotated to the deformed frame of reference as follows: 

 

𝛅d = [
𝛿I

𝛿II
] = 𝚽 𝛅 ,  where 𝚽 = [

cos(𝛼Γ)
−sin (αΓ)

   sin (αΓ)
   cos(𝛼Γ)

]  (5) 

 

 

 

2.3  Integration Procedure 

 

From the virtual work principle, we have:  

  

∫ δ𝛅d
T 𝛕 dΓ

Γ

= δ𝐪T ∫ 𝐁T 𝐃(𝑑) 𝛅d dΓ
Γ

= δ𝐪T 𝐅ext (6) 

 

Where 𝛕 is the traction vector, δ𝛅d = 𝐁 δ𝐪, 𝐪 is the nodal degree of freedom vector of the CE, and 

𝛕 = 𝐃(𝑑) 𝛅d, 𝐃(𝑑) is the cohesive stiffness matrix which is a function of the damage variable 

according the cohesive law. The tangent stiffness matrix of the CE is approximated by the material 

tangent stiffness matrix: 

 

𝐊 = ∫ 𝐁T 𝐃(𝑑) 𝐁 𝐽 d𝜂
1

−1

 (7) 
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Figure 4. Adaptively Gaussian integration scheme. The red dots indicate the integration points. 

 

 

 
 

Figure 5. Flowchart of adaptive integration 

 

 

An adaptive integration scheme is proposed for the new CE, which depends on the status of the CE. 

The CE status can be intact (d = 0 throughout), damaged (0 < d < 1 in certain locations) or failed (d = 

1 throughout), as shown in Figure 4. Figure 5 illustrates the adaptive procedure. If d = 0 at all 30 

points, the element is linear-elastic and only 3 Gauss points are used for subsequent integration. If d > 

0 in any of the 30 points, then the cohesive zone is travelling across this element and all 30 Gauss 
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points are used for subsequent integration. If d = 1 in all 30 points (complete failure of the CE), then 

the integration is revert back to the simple 3-point scheme for fast calculation.  

 

 

3  Validation 

 

The new CE has been tested under pure Mode I, Mode II and 50% Mixed Mode, through the 

simulation of the Double Cantilever Beam (DCB), End-Notched Flexure (ENF) and Mixed-Mode 

Bending (MMB) tests respectively. The load-displacement curves have been extracted from the 

performed tests. The analytical solutions of the load-displacements curves have been used to validate 

the CEs [9]. The material properties and geometry of the specimen for the DCB case have been taken 

from [14] and those of the ENF and the MMB cases from [9]. The penalty stiffness of the CE is 555 

GPa/mm. The mode I material strength is 60 MPa for DCB and 30 MPa for ENF and MMB. The 

methodology proposed by Turon et al. [9] has been used to compute the mode II material strength, 

which led to a value of 101.2 MPa for DCB and 58.9 MPa for ENF and MMB. For comparison, the 

benchmark cases have been modelled using plain strain elements (CPE4) and standard linear cohesive 

elements (COH2D4) in ABAQUS. Five elements through-the-thickness have been used for beams in 

DCB and ENF, and ten for MMB as the stress field is more complicated. A quadratic stress-based 

criterion has been used to identify the damage onset, and a bilinear cohesive law with the B-K mixed-

mode formula has been used to define the damage evolution.  

 

The results of load-displacement curves are presented in Figure 6. In DCB, the result of linear 0.25 

mm CE model follows closely the experimental curve. However, with 2 mm and larger linear CEs, the 

results would be far off the experimental curve, as shown in Figure 6(a). The predicted peak load is 

185% of the experimental value with 2.5-mm linear CE. With the new CE, with the 2.5-mm elements 

model, the peak load prediction is 104% of the analytical value and the predicted propagation curve 

follows closely the analytical one (Figure 6(b)). In the case of even larger CEs, linear CE model 

predicts no delamination within the duration of the simulation, while the 5-mm new CE model's peak 

load prediction is at 108% of the analytical value and the propagation curve still follows quite well the 

analytical one (Figure 6(b)). The stiffness of the new CE model is slightly larger than the analytical 

one, because the analytical solution is based on the corrected beam theory while the model is based on 

EB beam theory. The damage propagation phase is however not affected by this deviation. In ENF, 

similar observations can be made. the 2 mm and 5 mm linear CE models lead to an overshoot of the 

delamination onset by 115 % and 131%, respectively (Figure 6(c)). The 2 mm new CE model provides 

an excellent agreement with the analytical curve. The 5 mm new CE model is also able to predict the 

load-displacement curve quite accurately without huge overshoot of the peak load (Figure 6(d)). For 

the MMB case, the same conclusion can be reached. In the new CE model, the element size can be one 

order of magnitude larger than the one required for linear CEs and the load-displacement solution is 

equally, if not more, accurate (Figure 6(f)).  

 

Some comparisons (Table 1) have been made between the standard CE simulations and those of the 

new CE with similar levels of accuracy. The solver control settings are kept constant. As expected, 

because of the use of much larger elements and overall much fewer number of integration points, the 

new CE models can achieve a significant amount of saving in all aspects of the comparison.  
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(a) DCB linear CE 

 

(b) DCB new CE 

 

  
(c) ENF linear CE 

 

(d) ENF new CE 

 

  
(e) MMB linear CE (f) MMB new CE 

 

Figure 6. Comparison performances CEs DCB (a-b), ENF (c-d) and MMB (e-f). 
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Table 1. Cost comparison of simulations - new CE vs linear CE 

 DCB ENF MMB 

 Standard 

0.25 mm CE 

High Order 

2.5 mm CE 

Standard 

0.2 mm CE 

High Order 

2 mm CE 

Standard 0.2 

mm CE 

High Order 

2 mm CE 

# Elements 8901 158 6765 208 26490 144 

# D.o.F. 11040 606  15056 824 55847 1092 

CPU Time 2606 s 47 s 4406 s 47 s 32759 s 55 s 

Time/D.o.F. 0.236 0.077 0.292 0.057 0.589 0.050 

# Iterations 7088 1123 4851 1123 16619 1380 

 

 

4  Conclusions 

 

In this paper a new adaptively integrated 3
rd

-order Cohesive Element has been presented. The 

proposed CE employs rotational degree of freedom and the 3
rd

 order interpolation functions of Euler-

Bernoulli beam elements. While the interpolation scheme remains fixed, the integration scheme adapts 

to the status of the CE, where a finer integration scheme is used when the cohesive zone is passing 

through the element domain. It has been demonstrated on DCB, ENF and MMB simulations that the 

proposed CE, as compared to linear CE, can give accurate predictions of the whole load-displacement 

curves with: 1) one order of magnitude larger elements; and 2) significantly reduced CPU time and 

number of iterations. Future work will be on the extension of the presented methodology on 3D 

cohesive elements. 
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