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Abstract
A mutliscale methodology has been introduced for determining the early stages of damage evolution in
Quilted Stratum Process (QSP) [1] thermoplastic composite parts and answer critical design questions
on why, where, and when damage and fracture initiates. A Virtual Testing Analysis (VTA) is developed
using a global-local method based on the decomposition of a structure into a number of Representative
Structural Components (RSC). The proposed software aims to augment FEA,with a hierarchicalmodeling
that goes down to themeso-scale where a detailedmodeling of each substructural component is performed
using non-linear FEA. A key aspect of the VTA is that off-line computations for the RSC can be stored
and used for different global scale structures as a simple failure criterion.

1. Introduction

Under the VTA framework a damage analysis to determine the early stages of degradation evolution
under service loading is introduced. Physics based composite damage and failure mechanisms are used
to interrogate the structural response. The evaluation of damage and failure criteria are implemented at
the important structural details (local) and appropriate stiffness degradation functions with a pre-defined
tolerance are reflected in the structural stiffness. As a benchmark test case, the simulation of interlaminar
composite failures, namely delamination initiation/growthmechanisms of an internal ply drop-off laminate
is considered using Cohesive Zone Modeling [2,3]. An essential part of the VTA concerns the generation
of a high dimensional design space for each local substructure using variables corresponding to the
operating loading conditions, material orientation angles and geometric features. Different Design of
Computer Experiments (DCE) methods are implemented for sampling the design space as for example
Latin Hypercube Sampling (LHS), sampling subjected to constraints, etc. Hence, a large-scale system
identification problem arise in the estimation of the parameters of polynomial approximations.
A Linear Least Squares (LLS) method for constructing polynomial approximations as well as a novel
Multi-Stage Least Squares (MSLS) approach is presented as an alternative approximation for the design
and analysis of computer experiments. The MSLS relies on a variable separation into sets which yields
locally optimal solutions in each subspace. The separation of variables produces a significant reduction
in the dimensionality of the problem. In MSLS, LLS minimization problems are defined in each stage
where different polynomial order approximations can also be applied. Preliminary results showed a higher
accuracy of MSLS in comparison to LLS with a significant reduction in the computational complexity of
more than two orders of magnitude. Error analysis of LLS and MSLS is performed along with a graphical
comparison of the approximations.

2. General overview of the Multiscale global-local methodology

The multiscale methodology augments finite element software by providing progressive failure ana-
lysis based on damage tracking and material property degradation at the meso-scale, where damage
and delamination have their source. The global/local overall process designed to couple two separate
Abaqus/Standard analysis is illustrated in Fig. 1 and can be summarized in the following steps :
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1) A global structural analysis is realized to evaluate the structural response subjected to the operating
design loads. The global structures aremodeled and analyzed using conventional shell elements to keep the
modeling and computational effort affordable. During this step, the loading conditions at the boundaries
of the important structural details are extracted using Abaqus Submodeling [4] in order to be transferred
to the local scale as boundary conditions for non-linear FEM computations.
2) A decomposition of the composite part and detailed modeling of the structural components (e.g., stiffe-
ners, tapering of the thickness of a laminate by terminate, or dropping, internal or external plies, corners)
(see Fig. 1), henceforth called Representative Structural Component (RSC) problems is performed. These
local problems are modeled using a nonlinear FE analysis (Abaqus/Standard). In the later, solid elements
with cohesive elements or cohesive surfaces are introduced to evaluate the various delamination modes
[2,3].
3) DCE methods are implemented for an efficient sampling of the design space using LHS, sampling
subjected to constraints, etc.
4) A Response Surface (RS) method is used for constructing polynomial approximations using LLS or
the novel MSLS approach which is proposed as an alternative approximation for the design and analysis
of computer experiments. RS is applied to the data of the design space in order to define a set of criteria
describing the various failure modes of the RSC. These criteria may involve not only the macroscopic
loading but also the material properties of the plies related to different fiber orientations as well as the
geometry of the laminate defined by the local stacking sequence. Thus, it is possible to study the design
limits of the established criteria vis a vis reference configurations in order to define the application of the
model range.
5) Determination of the RSC stiffness loss in reference directions based on a Linear Perturbation Analysis
performed during the FEA.
6) Design of failure envelopes for a damaged state that corresponds to a predefined reduction of the RSC
laminate stiffness in reference directions.

Fig. 1.: Virtual Testing Analysis flowchart for QSP thermoplastic composite parts.

3. Local scale - Cohesive Zone Modeling in Abaqus

3.1. Cohesive Zone Modeling (CZM)

The basic hypothesis of the CZM is that all the inelastic effects that occur at the vicinity of a crack can
be lumped into a surface, the cohesive damage zone. Cohesive damage zone models relate tractions t to
displacement jumps δ at an interface where a crack develops. Damage initiation is related to the nominal
cohesive strength t◦ ; when the area under the traction-displacement jump relation is equal to the critical
energy release rate, Gc, the traction is reduced to zero and new crack surfaces are formed. The new crack

O. Friderikos, E. Baranger and D. Guillon



ECCM18 - 18th European Conference on Composite Materials
Athens, Greece, 24th − 28th June 2018

surfaces are completely formed when the displacement jump is equal or greater that the displacement
jump at complete failure δ f . Using the definition of the J integral, it can be shown that for small cohesive
zones [2] ∫ δ f

0
t(δ)dδ = Gc (Eq. 1)

A bi-linear triangular cohesive law for failure analysis is used for pure Mode I and pure Mode II or Mode
III. The form of the cohesive law is dependent on the corresponding cohesive strength, interfacial stiffness
(penalty stiffness, K) and the critical strain energy release rate.

t =


Kδ, δ ≤ δ◦

(1 − d)Kδ, δ◦ < δ < δ f

0, δ ≥ δ f
(Eq. 2)

A mixed-mode criterion accounting for the effect of the interaction of the traction components in the
onset of delaminaton is used. Damage initiation is predicted using a quadratic failure criterion considering
nominal stresses where compressive normal tractions do not affect delamination onset :{

〈tn〉
t◦n

}2
+

{
ts
t◦s

}2
+

{
tt
t◦t

}2
= 1 (Eq. 3)

where t◦s , t◦s and t◦t are the nominal cohesive strengths in normal and the two shear directions, respectively
and 〈〉 is the Macaulay bracket notation denoting the positive part.
In order to accurately account for the variation of fracture toughness as a function of mode ratio, a
mixed-mode energy-based damage evolution criterion proposed in [5] is used

Gc = Gc
n + (G

c
s − Gc

n)

(
Gs

Gn + Gs

)n
(Eq. 4)

where n is the semi-empirical criterion exponent applied to delamination initiation and growth.
3.2. Simulation of the debonding mechanisms of internal ply drop-off laminates

Tapered laminated structures are formed by dropping off some of the plies at discrete positions over
the laminate. The inherent weakness of this construction is the presence of material and geometric
discontinuities at ply drop region that induce premature interlaminar failure at interfaces between dropped
and continuous plies and may cause a significant loss of structural integrity. In the foregoing simulations
of internal ply drop-off laminates, the geometry of the resin pocket is idealized to be right triangular
shaped which represents a worst-case scenario, i.e., it is more prone to delamination than other triangular
shapes (especially in the thin section) [6]. Hence, a minimization of the number of parameters needed
to describe the ply-drop geometry is accomplished. Furthermore, the resin pocket is considered as a
void in order to increase the stress intensity factors in the local models. This promotes thin section
delamination, while the onset and growth of interlaminar cracks in the thick section are both unaffected
by the material/geometrical properties of the resin pocket [7,8].
A benchmark ply drop-off model comprised of three composite 0◦ plies with uniform thickness of 1 mm
subjected to static tensile loading using prescribed displacements of ux = 0.25 mm is presented in Fig. 2.
The scalar damage variable of the cohesive elements (SDEG) presents the failure state of the cohesive
zones (red color identifies completely damaged elements). Delamination starts from the root of the ply
drop (thin section) followed by delamination propagation at the two cohesive zones at the thick ply drop
section. Displacement discontinuity in the longitudinal direction-1 indicates Mode II fracture in both
cohesive zones (Fig. 2.b) whereas displacement discontinuity in the transverse direction-2 resulting to
Mode I fracture occurs only in the ply drop thin section cohesive zone (Fig. 2.c).
Furthermore, in order to reduce the computational complexity, an equivalent 2D ply drop off model
is implemented using Surface-based cohesive behavior [4] which provides a simplified way to model
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(a) (b) (c)

Fig. 2.: Damage evolution of the benchmark ply drop model under static tensile loading ; (a) SDEG of
the cohesive elements ; (b) Displacement discontinuity in longitudinal direction-1 (Mode II fracture) ; (c)
Displacement discontinuity in the transverse direction-2 resulting to Mode I fracture only in the ply drop
thin section cohesive zone.

cohesive connections with negligible small interface thickness using the traction-separation constitutive
law. Cohesive surface behavior is defined as a surface interaction property and a pure master-slave
formulation is enforced for surfaces with cohesive behavior. It has to be mentioned that since it is not
possible to take into account the different fiber orientations of the plies in the 2D case in Abaqus/Standard,
a transformation of the material axes has been performed and a fully anisotropic tensor is defined using
Matlab scripts for the 2D model.

3.3. Linear Perturbation Analysis (LPA) - Directional Stiffness Loss criterion

Weaim to investigate the structure’s integrity due to damage accumulation resulting from the delamination
of the cohesive zone layers. A precise characterization of the structural response requires the knowledge
of the structural stiffness loss in various reference directions when it is subjected to an arbitrary loading
state. Consequently, a Linear Perturbation Analysis (LPA) is used and is postulated to be a measure of
the structure’s integridy. We perform LPA using a general analysis step to provide the linear response
of the system. LPA is performed from time to time during the nonlinear analysis by including the linear
perturbation steps between the general response steps. The linear perturbation response has no effect on
the general analysis since the perturbation load is taken arbitrarily to be a very small number. LPA steps
are performed in directions 1, 2 and rotation in direction 3 using prescribed displacements/rotations.
Hence, LPA results to the evaluation of the Directional Stiffness Loss (DSL) functions DSLU1,DSLU2
and DSLUR3 defined as DSL = (C0 −C)/C0, where C0 and C are the initial and damaged stiffness at state
n, respectively.

4. Design of Computer Experiments (DCE)

Latin hypercube sampling (LHS) is used for generating randomly distributed points in the design space
corresponding to different ply material orientations [9]. LHS design created with the Matlab function
lhsdesign with d = 3 dimensions and SP = 40 points. The design variables in this case corresponds to ply
orientations angles θ◦1, θ

◦
2, θ
◦
3 of the three RSC plies, respectively. The design limits for the ply orientations

are 0◦ ≤ θ◦1 ≤ 90◦, 0◦ ≤ θ◦2 ≤ 90◦, 0◦ ≤ θ◦3 ≤ 90◦.
Sampling in the interior of the design space is not optimal when prescribed displacements/rotations are
used since during FEM computations all the intermediate states are also evaluated. Hence, a design
space sampling optimization can be obtained if the points are equally distributed on the surface of a
n-dimensional sphere, i.e., if for example all prescribed displacements and rotations are considered, the
sampling points must be uniformly distributed on the surface of a 6D sphere. In the 2D case, utilizing
prescribed displacements UX and UY and rotation URZ, N = 62 sampling points are equi-distributed on
the surface of a sphere with polar angle θ = π/6 and azimuth angle φ = π/6.
Opposed to the above cases, sampling of the design space for the ply drop off laminate thickness is not
a trivial task since a number of geometrical constraints are required according to the final net shape
design. These constraints concern the thickness of the individual plies of the laminate as well as the
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overall structural thickness. Application of the LHS in a constraint space requires complex algorithms
that cannot in general guarantee an optimal sampling, especially in high dimensional spaces. Henceforth,
in the present analysis we introduced a non-optimal but simple procedure to sample the constraint design
space. First, a LHS is performed using the minimum/maximum values of the design variables and at a
following step the points that are not fulfill the geometrical constraints are rejected.

5. Procedure for Generating RSC Failure Envelopes

5.1. Linear Least Squares

The linear model is the main technique in regression problems and the primary tool for least squares
fitting. LLS minimize a sum of squared errors, or equivalently the sample average of squared errors.
That is a natural choice when one is interested in finding the regression function which minimizes the
corresponding expected squared error. From the observed response values y1, y2, ..., yn and features xi j
for i = 1, ..., n and j = 1, ..., p, LLS is obtain the parameter values α1, ..., αp that minimize

arg min
α1,...,αp ∈R

S(α1, ..., αp) =

n∑
i=1

(
yi −

p∑
j=1

xi jαj

)2
(Eq. 5)

The minimizing values are denoted with hat symbols : α̂1, ..., α̂p. To minimize S, we set its partial
derivative with respect to each αj to 0. The solution satisfies

∂

∂αj
S = −2

n∑
i=1

(
yi −

p∑
j=1

xi j α̂j

)
xi j = 0, j = 1, .., p (Eq. 6)

The p equations in (Eq. 6) are also known as the normal equations. Let us writing equations (Eq. 5) and
(Eq. 6) in matrix notation where responses and feature values are represented via the vector Y and matrix
X. Let α = (α1, ..., αp)

T and α̂ denote the minimiser of the sum of squares. From the normal equations
we find that

α̂ = (XTX)−1XTY (Eq. 7)

where the matrix X+ = (XTX)−1XT is the Moore-Penrose inverse.

5.2. Multi-Stage Least Squares and Subspace Approximation

The Multi-Stage Least Squares algorithm (MSLS) can be viewed as a method which provides an optimal
selection at each stage locally so as to obtain a globally optimum solution. Using a selection of subsets
of the regression variables, the MSLS yield locally optimal solutions in each subspace where different
polynomial order approximations can be applied. In summary, implementation of MSLS consists of
minimizing the first subspace and then using the optimal values obtained for the estimated parameters as
an input to solve theminimization problem in the second subspace. This procedure is followed sequentially
for all subspaces and a global minimum is found at the end of the process. MSLS can be outlined in the
subsequent steps.

5.2.1. Selection of Subsets of Regression Variables

Let at assume vectors xL, xΘ, xG corresponding to different sets of variables as follows

x = {x1 x2 · · · xn1︸          ︷︷          ︸
xL

xn1+1 xn1+2 · · · xn1+n2︸                      ︷︷                      ︸
xΘ

xn2+1 xn2+1 · · · xn2+n3︸                      ︷︷                      ︸
xP

}T = {xL xΘ xP}T (Eq. 8)

where xL ∈ Rp, xΘ ∈ Rq, xG ∈ Rr , p+ q + r = n in a way that the following LS problems can be defined
in different subspaces. In our case, xL denote the loading variables, xΘ denote variables related to the
material orientation angles and xG denote variables related to geometry configurations.
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5.2.2. First-Stage Least Squares

In the subspace spanned by the variables xL we need to solve (k × m) minimization problems for every
fixed xΘi, xG j in the design spaceH under consideration.

arg min
α1,...,αp1 ∈R

S1(α1, ..., αp1) =

g − L(xL)α(xΘi, xG j )

2

L2

(Eq. 9)

and estimate parameter vectors α̂(xΘi, xG j ), i = 1, 2, · · · , k, j = 1, 2, · · · ,m.

5.2.3. Second-Stage Least Squares

In the subspace spanned by the variables xΘ we need to solve (P1 × m) minimization problems for every
fixed xG j in the design spaceH under consideration.

arg min
β1,...,βp2 ∈R

S2(β1, ..., βp2) =

α̂Θ,G j

n1 −Θ(xΘ)βn1(xG j )

2

L2

(Eq. 10)

with α̂
Θ,G j

n1 = {α̂
Θ1,G j

n1 α̂
Θ2,G j

n1 · · · α̂
Θk,G j

n1 }T , n1 = 1, 2, · · · , P1, j = 1, 2, · · · ,m
and estimate parameter vectors β̂n1(xG j ).

5.2.4. Third-Stage Least Squares

In the subspace spanned by the variables xG we need to solve (P1 × P2) minimization problems

arg min
γ1,...,γp3 ∈R

S3(γ1, ..., γp3) =

β̂G
n1,n2 −G(xG)γn1,n2

2

L2

(Eq. 11)

with β̂
G
n1,n2 = { β̂

G1
n1,n2 β̂G2

n1,n2 · · · β̂Gm

n1,n2}
T , n1 = 1, 2, · · · , P1, n2 = 1, 2, · · · , P2

and finally estimate parameter vectors γ̂n1,n2.

5.2.5. Reconstruction of the analytical function

Finally, the reconstruction of the analytical function can be expressed as

ĝ(xL, xΘ, xG) =

P1∑
i

α̂i(xΘ, xG) fi(xL) =

P1∑
i

[ P2∑
j

β̂ij(x
G)hj(xΘ)

]
fi(xL) =

P1∑
i

[ P2∑
j

[ P3∑
k

γ̂
i, j
k

qk(xG)

]
hj(xΘ)

]
fi(xL) (Eq. 12)

where β̂ij : j parameter estimation of α̂i and γ̂
i, j
k

is the k parameter estimation of β̂ij , i = 1, ..., P1,
j = 1, ..., P2, k = 1, ..., P3.

6. Numerical Tests

Numerical tests have been performed to evaluate the approximation of the LLS and MSLS method.
Furthermore, in order to gain further insight into the non-linear structure of the DSL manifold in a
lower dimensional space, we consider a 3D space where an analytical function of the DSL is estimated
by fixing one of the loading variables, i.e., x2 = const, and therefore considering only two loading
variables xL = {x1, x3}, and generating failure graphs for the three variables corresponding to the
material orientation angles sampling points Θi(xΘ); xΘ = {x4, x5, x6} and the three variables related to
the ply laminate thickness sampling points Gj(xG); xG = {x7, x8, x9} of the RSC part.
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6.1. Linear Least Squares

For the approximation of the DSL manifold, a quadratic (d = 2, n = 9) and a 4-order polynomial
equation (d = 4, n = 9) are used, resulting to the estimation of

(n+d
n

)
=55 and 715 parameters, respectively.

The coefficient of determination R2 and the RMS value are computed for both equations in order to
evaluate the gain of the LLS approximation using different polynomial order. Due to the large number of
combinations between the variables of the 9D design space, we will provide some illustrative examples
of the LLS approximation in a 3-D space. Figure 3 shows a surface plot of the LLS approximation using
a 4-order polynomial for the DSLU1 (LPA in U1 direction) corresponding to the material orientation
sampling point Θ1(θ1 = 40.48◦, θ2 = 53.26◦, θ3 = 25.70◦) for two goemetric sampling points G1(t1 =
0.85, t2 = 1.30, t3 = 1.39) and G3(t1 = 1.61, t2 = 1.17, t3 = 1.19), respectively. Fig. 4 illustrates the
coefficient of determination R2 and the RMS of the quadratic and 4-order model for each configuration
Θi = Θi(θ1, θ2, θ3), i = 1, 2, ...k, where k is the number of different composite layups related to the
sampling point G1(t1 = 0.85, t2 = 1.30, t3 = 1.39). As evidenced by the high R2 values close to unity, the
4-order model appears to capture a large portion of the observed variance and is more accurate than the
quadratic model.

(a) (b)

Fig. 3.: LLS approximation using a 4-order polynomial ; a) DSLU1(Θ1,G1), b) DSLU1(Θ1,G3) ; Θ1(θ1 =

40.48◦, θ2 = 53.26◦, θ3 = 25.70◦),G1(t1 = 0.85, t2 = 1.30, t3 = 1.39),G3(t1 = 1.61, t2 = 1.17, t3 = 1.19).
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Fig. 4.: Coefficient of determination R2 and RMS corresponding to a quadratic and a 4-order polynomial
equation model for each configuration Θi = Θi(θ1, θ2, θ3), i = 1, 2, ...k, where k is the number of different
composite layups related to the sampling point G1(t1 = 0.85, t2 = 1.30, t3 = 1.39).
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6.2. Multi-Stage LS

At the First-Stage approximation, a 4-order polynomial equation (d = 4, n = 3) is used, resulting to the
estimation of

(n+d
n

)
=35 parameters, whereas at the Second and the Third-Stage, a cubic (d = 3, n = 3)

and a quadratic (d = 2, n = 3) polynomial equation is used resulting to the estimation of 20 and 10
parameters, respectively. Figure 5 shows a surface plot of the MSLS approximation for the First and the
Second- Stage MSLS of the DSLU1 corresponding to the material orientation sampling point Θ1(θ1 =

40.48◦, θ2 = 53.26◦, θ3 = 25.70◦) and goemetric sampling point G1(t1 = 0.85, t2 = 1.30, t3 = 1.39).
Furthermore, it is worth to underline that in the present application, MSLS provides a reduction in the
computational complexity over two orders of magnitude as compared to LLS with almost the same level
of accuracy (Figure 6).

(a) (b)

Fig. 5.: MSLS approximation of DSLU1(Θ1,G1) ; a) First-Stage MSLS approximation (d = 4, n = 3), b)
Second-Stage MSLS approximation (d = 3, n = 3).
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Fig. 6.: Computational complexity of the LS and the Multi-Stage LS.

7. Conclusions

The overall goal of this effort is to perform certification-by-analysis, utilizing an accurate VTA approach
in combination with a reduced physical test data to decrease the design cycle time and cost for QSP
thermoplastic composite parts. To this end, failure criteria based on a tolerance of stiffness loss for the
composite part in order to achieve a robust design are determined.
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