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Abstract 

Based on an improved material knowledge, especially on the fatigue behaviour of short glass fibre 

reinforced (sgfr) polymers, highly stressed parts can be developed for industrial purposes. Especially 

in automotive applications, high load amplitudes within load histories as well stress concentrations in 

complex geometries can lead to plasticisation’s. This has to be considered in a lifetime assessment in 

an early stage of the development process. Therefore, it is indispensable to understand the effects of 

the main fatigue influence factors. To establish a closed simulation chain, the applicability of common 

material models (e.g. fatigue criteria according to Ramberg-Osgood) has to be studied first, the models 

have to be adapted or even new models have to be found for sgfr materials. This paper will focus on 

the feasability of strain controlled fatigue tests. Therefore, tests were performed on a 50 wt% sgfr 

partial aromatic polyamide. Un-notched, injection moulded specimen are used for the fatigue tests. To 

investigate the influence of mean-strain, tests were performed at two different strain ratios, R = -1 and 

R = 0.1 at standard conditions. The test results show a principal applicability of LCF-tests for sgfr 

polymers. 

 

1. Introduction 

 

Proven approaches for life time assessment of short fibre reinforced polymers (sgfr) are based on the 

concept of local Sa/N-curves, where the bearable stress amplitude Sa is plotted over the cycles to 

failure N. [1, 2] This concept manly describes the material behaviour in the regime of fatigue strength 

(HCF) and the acting influences, Figure 1. Rarely appearing high loads during load history and stress 

concentration leads to high stresses in real life parts. Hereby the fatigue life is influenced. Former 

investigations show that plastic proportion of the total strain amplitude during a load cycle has an 

indispensable share on the damage. Therefore, the primary strain based damage in the area of low 

cycle fatigue (LCF) has to be described.  
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Figure 1. areas of Sa/N-curves 

Unlike classical stress controlled Sa/N-curves, strain controlled /N-curves are needed. To describe the 

cyclic material behaviour in LCF-range of the Sa/N -curve the /N-curves as well as the cyclic 

stabilized --diagram has to be derived from strain controlled tests. While the cyclic stabilized  

a--curve depicts the cyclic hardening or softening, the /N-curves characterizes the material 

behaviour at low amount of load cycles (N < 10000). Since both curves are derived with the same 

test, a direct relation can be found, so that both diagrams include the same information, Figure 2. The 

black dotted line represents the connection between this two curves. [3] 
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Figure 2. cyclic stabilized /-curve and /N-curves 

According to works of Coffin [4], Manson [5] and Morrow [6] the elastic as well as the plastic strain 

amplitudes can be approximated by straight lines in a double-log diagram. Equation (1) describes the 

relationship between the cycles to failure (N) and the strain amplitude (a).  

a,tot = a,el. + a,vis. = (f’/E)·(2Nf)b + f · (2Nf)c (1) 
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As mentioned before, a direct relationship is given by the vertical cut in the /N-curve and the 

horizontal cut in the cyclic stabilized a--curve. This is known as the Ramberg-Osgood-relations [7] 

according to Equation (2).  

a,tot = a,el. + a,vis. = (a/E) + (a/K‘)(1/n‘) (2) 

This relation is only possible if the compatibility conditions according Equation (3) and (4) are 

fulfilled.  

n‘ = b/c (3) 

K‘ = f‘ · f‘
(-n)‘ (4) 

 

2. Test and specimen 

Strain controlled tests were performed on a servo hydraulic test rig MTS810. The machine 

was equipped with a 100 kN load cell. For strain measurement a contacting high accuracy 

strain measurement device by MTS was used. The test setup is shown in Figure 3. All tests 

were performed at constant temperature of T = 23°C and relative humidity of 50 %. To 

prevent overheating, a fan ensures additional cooling. During the whole test the temperature 

was monitored by a non-contact infrared thermometer. A triangular signal with constant strain 

rate of d / dt of 100% / min. was used. A constant strain rate was chosen to avoid deviations 

caused by strain rate dependend material behavior. By using a constant strain rate the 

frequency differs depending on strain level between f = 0.2 Hz to f = 0.6 Hz. Strain levels 

were defined to achieve a range of cycles to failure from N = 100 to N = 104. The total 

specimen separation, or exceeding a number of cycles of N = 105 are set as abort criterion. To 

cover the influence of mean-strain, strain ratios of R = -1 and R = 0.1 were chosen. Test 

results were estimated according to ASTM E 739-91 [8]. 

 
extensometer infrared - thermometer

cooling with 

fan

 
Figure 3. test setup for strain controlled tests 
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A parallel area on the specimen is needed to ensure accurate strain measurements. Therefore 

unnotched rotary bending specimen were used. The geometry of T-shaped specimen are 

shown in Figure 4. The specimen were produced by injection molding and tested dry as 

molded. 

 
Figure 4. unnotched rotary bending specimen according to [9] 

 

3. Test results 

The Test results show just a small expansion of the hysteresis, whereby the expansion under 

tensile load is more pronounced. The small change in hysteresis-shape indicates a low amount 

of viscoelastic behavior at the investigated strain levels. A low reduction in strain amplitudes, 

even at high strain levels, indicates just a low material softening. Due to the stiff material 

behavior, for polymers well-known cyclic creep and relaxations, are not very pronounced for 

the investigated material. Recorded hysteresis for two exemplary strain amplitudes are shown 

in Figure 5. Stress data are normalized by the tensile stress evaluated at a related strain of 

 = 1 % in a tensile test. For small strain amplitudes neither a noticeable stress reduction nor a 

change in strain occurs, so that the deformation of the specimen can be seen as elastic.  
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Figure 5. test results for R = -1 at: a) a  = 0.7%; b) a  = 0.45% 

Under pulsating strain (R = 0.1) quite similar results can be derived from the tests. Equal to 

tests at R = -1 the hysteresis shape do not change significantly. Due to mean-strain, cyclic 

creep and relaxation processes are provoked in the material. This is shown by a reduction in 

stress with simultaneous increase of strain. Even at high strain amplitudes the material shows 

just minor changes. Small variations around upper and lower strain level, especially at the 

beginning of a test, are caused by control deviations. The normalized hysteresis is shown in 

Figure 6. 
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Figure 6. test results for R = 0.1 at: a) a = 0.5%; b) a = 0.35% 

4. Models 

Based on the test results, the cyclic stabilized a--curve as well as the /N-curves can be 

derived to describe the material behaviour for LCF-area. As already mentioned the material 

shows a very stiff behaviour with just a small amount viscoelasticity. In Figure 7 the derived 

curves are shown. It should be noted, that for strain based /N-curve the strain amplitude is 

plotted versus the number of oscillation reversals Nf. As a result of these tests, parameters for 

Equation (1) and (2) can be derived. Based on the gained curves a realistic stress 

rearrangement can be achieved for the life time assessment according to the local stress 

approach. Further the results can be applied in the concept of notch root stress. [3] 
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Figure 7. test results for R = -1: a) cyclic stabilized --curve; b) /N-curves 

Plotting the measured stress amplitudes (at Nf/2) versus the cycles to failure, it can be shown 

that a roughtly linear extrapolation of the S/N-curve down to N =  2000 cycles delivers a good 

correlation for the investigated material, Figure 8. For higher loads the viscoelastic share has 

to be considered by the shown models.  
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Figure 8. compared test results for R = -1 

 
5. Summary and Outlook 

Strain controlled tests were performed at two different strain ratios on injection moulded T-shaped 

specimen. The test results show a very stiff material behavior with just a small amount of 

viscoelasticity, so that cyclic creep and stress relaxation are slightly pronounced. Even an applied 

mean-strain does not lead to these phenomenons. With an increase of mean-strain, a decrease in 

fatigue limit is observed, as expected. For the investigated material, a life time assessment, based on 

S/N-curves, can be conducted to a low number of cycles.   

The test results show a good applicability of the considered models, so that they can be used for the 

investigated material. Determined parameters for the cylic --curve and the /N-curve provide the 

basis for strain rearrangement according to Neuber’s rule. Hereby high load amplitudes and stress 

concentrations can be handeled in an early stage of the development process.   

Since the matrix material, the fibre material and fibre content influence the material behavior strongly, 

the shown models may not be applicable for materials with more pronounced viskoelasticity. 

Furthermore polymers show a strong dependency of the material behavior on the temperature and the 

fibre orientation. Further investigation needs to be done to describe these influences.  
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