Assessing the integrity of randomised trials using individual participant data: the IPD Integrity Tool

Hunter KE, Aberoumand M, Libesman S, Sotiropoulos JX, Williams JG, Aagerup J, Barba A, Shrestha N, Wang R, Mol BW, Li W, Webster AC, <u>Seidler AL</u>

NextGen Evidence Synthesis Team, NHMRC Clinical Trials Centre, The University of Sydney, Australia

My background: individual participant data (IPD) meta-analyses

Individual Participant Data (IPD) metaanalysis involves the central collection of raw data for each participant in the original trials

Systematic reviews at the top of the evidence hierarchy

Individual participant data meta-analyses: 'gold standard' for evidence synthesis

Widely used to inform healthcare policy and practice

Individual participant data meta-analyses at the top of the evidence hierarchy

Individual participant data meta-analyses: 'gold standard' for evidence synthesis

Widely used to inform healthcare policy and practice

Integrity crisis

NEWS | 12 December 2023

More than 10,000 research papers were retracted in 2023 – a new record

The number of articles being retracted rose sharply this year. Integrity experts say that this is only the tip of the iceberg.

By Richard Van Noorden

There's far more scientific fraud than anyone wants to admit *Ivan Oransky and Adam Marcus*

Despite recent scandals of research misconduct and error, the academic world still seems determined to look the other way

'The situation has become appalling': fake scientific papers push research credibility to crisis point

Last year, 10,000 sham papers had to be retracted by academic journals, but experts think this is just the tip of the iceberg

Fake research papers could jeopardise drug development, warn academics. Photograph:
 WestandF1/Gatty Images

NEWS FEATURE | 18 July 2023

Medicine is plagued by untrustworthy clinical trials. How many studies are faked or flawed?

Investigations suggest that, in some fields, at least one-quarter of clinical trials might be problematic or even entirely made up, warn some researchers. They urge stronger scrutiny.

By Richard Van Noorden

How do I assess integrity of trials in my individual participant data meta-analysis?

Publiccetions

Pagora

hillin

Deeptes

Emerging tools to assess integrity of studies – none for individual participant data!

> Most tools relate to aggregate data and/or publications

The NHMRC Clinical Trials Centre, The University of Sydney

The power of individual participant data (IPD)

Carlisle, J. B. Anaesthesia 76, 472–479 (2021)

Need for IPD to detect integrity issues

Aim

Systematic review and network meta-analysis with individual participant data on **Co**rd **M**anagement at **P**reterm Birth

To develop an individual participant data meta-analysis (IPD-MA) integrity tool

THE LANCET

Volume 402, Issue 10418, 9–15 December 2023, Pages 2209-2222

THE LANCET

Articles

Deferred cord clamping, cord milking, and immediate cord clamping at preterm birth: a systematic review and individual participant data metaanalysis

Anna Lene Seidler PhD^a, ≥ ⊠, Mason Aberoumand MAppStat^a, Kylie E Hunter MPH^a, Angie Barba MSciMed^a, Sol Libesman PhD^a, Jonathan G Williams PhD^a, Nipun Shrestha PhD^a, Jannik Aagerup MPH^a, James X Sotiropoulos MD^a, Prof Alan A Montgomery PhD^b, Prof Gillian M L Gyte MPhil^c, Prof Lelia Duley MD^b*, Prof Lisa M Askie PhD^a* iCOMP Collaborators[†]

Show more 🗸

Volume 402, Issue 10418, 9–15 December 2023, Pages 2223-2234

Articles

Short, medium, and long deferral of umbilical cord clamping compared with umbilical cord milking and immediate clamping at preterm birth: a systematic review and network meta-analysis with individual participant data

Anna Lene Seidler PhD^a, A iso, Sol Libesman PhD^a, Kylie E Hunter MPH^a, Angie Barba MSciMed^a, Mason Aberoumand MAppStat^a, Jonathan G Williams PhD^a, Nipun Shrestha PhD^a, Jannik Aagerup MPH^a, James X Sotiropoulos MD^a, Prof Alan A Montgomery PhD^b, Gillian M L Gyte MPhil^c, Prof Lelia Duley MD^b*, Prof Lisa M Askie PhD^a* iCOMP Collaborators[†]

The IPD Integrity Tool: for assessing the trustworthiness of randomised trials using IPD

Domain 3: Correlations

Are expected correlations present?

Pearson correlation estimate: 0.04

Are expected correlations present?

Trial A. Expected correlation present

Domain 5: Patterns of allocation

Is randomisation appropriate?

Overall assessment: decision-making process

The NHMRC Clinical

- 58/64 trials contributing IPD had at least one potential integrity issue identified – mostly minor inconsistencies or errors that were resolved via consultation.
- 3/64 IPD trials **excluded** due to integrity concerns

Conclusion

 The IPD Integrity Tool enables users to assess the integrity of RCTs via examination of IPD

Follow this preprint

Development of the Individual Participant Data (IPD) Integrity Tool for assessing the integrity of randomised trials using individual participant data

KE Hunter, M Aberoumand, S Libesman, JX Sotiropoulos, JW Uliams, W Li, J Aagerup, BW Mol, R Wang, A Barba, N Shrestha, AC Webster, AL Seidler doi: https://doi.org/10.1101/2023.12.11.23299797

2 manuscripts close to publication

- 1) Development of tool
- 2) Instructions on how to use tool

Get in touch if you would like to access our tool!

When to use the IPD Integrity Tool

	Scenario	Who uses the tool	What tool is used for
	1.Individual participant data meta-analysis (where IPD are available for all or some trials)	IPD-MA project team	Guides decision on whether to include a trial in meta-analysis
	2.Questionable trial identified during conduct of aggregate data meta-analysis and IPD are requested to assess trustworthiness	AD-MA project team	Guides decision on whether to include a trial in meta-analysis
	3.Questionable study submitted for publication and IPD are requested by editors to assess trustworthiness	Journal editors	Guides decision on whether to consider a manuscript for publication
	4.Trustworthiness concerns raised about a published study, and IPD are requested by editors to investigate	Journal editors	Guides decision on whether to retract a publication or issue an expression of concern
The	5.Routine IPD checks for editors to screen submitted trials	Journal editors	Guides decision on whether to consider a manuscript for publication

Open questions

- How to deal with untrustworthy studies in a collaboration?
- Threshold for data exclusion? How strict should we be?
- The role of Artificial Intelligence in data fabrication?

Thank you!

<u>lene.seidler@sydney.edu.au</u> @LeneSeidler

Kylie Hunter Kylie.hunter@sydney.edu.au

The IPD Integrity Tool

Instructions & decision guide: explains how to assess each item and provides decision rules to guide rating process

Automation script: Template script to generate

R Markdown report which semi-automates assessment of some items

Individual participant data level integrity checks Note: (R) denotes assessments that may be semi-automated using the R markdown template

Integrity domain and	How to assess	w to assess Response options					
items		No issues	Some/minor issue(s)	Many/major issue(s)	severity of issue(s)		
1. Unusual or repea	ted data patterns						
1.1 Repeating patterns within baseline variables	Sort and visually assess the data for repeating patterns within baseline variables. Assess in dataset order, randomisation order, and also separately for study groups	- No repeating data patterns identified	 Some repeating data patterns identified, but may be consistent with chance 	 Repeating data patterns identified that are extremely unlikely to have occurred by chance, e.g. trialist copy and pasted every 10 rows 	 Poor granularity of measures and rounding may lead to repetition of values, e.g. age rounded to years with narrow eligibility range 		
1.2 Repeating data patterns <i>across</i> baseline variables	Sort each baseline variable from smallest to largest, and look for patterns across variables <i>R markdown</i>	- No repeating data patterns identified	 Some repeating data patterns identified, but may be consistent with chance or plausible correlation between variables 	 Repeating data patterns identified that are extremely unlikely to have occurred by chance, e.g. all newborns with a length of 30cm have identical birthweight 	 Poor granularity of measures and rounding may lead to repetition of values, e.g. when gestational age at birth is rounded to weeks, and birthweight is rounded to the nearest 500g 		
1.3 Repeating data patterns across baseline variables and rare variables	As above, but focus on repetition across any rare variables present in dataset <i>R markdown</i>	- No repeating data patterns identified	 Some repeating data patterns identified, but may be consistent with chance 	 Repeating data patterns identified that are extremely unlikely to have occurred by chance, e.g. all children who suffer an adverse event have the same sex, birthweight and age at enrolment 			
1.4 Bias in the terminal (rightmost) digits	Plot and examine bar charts of the terminal digit for select continuous variables (avoid variables that tend to be rounded or that lack precision)	- Terminal digits follow a uniform or expected distribution	- Biased or non-uniform distribution of terminal digits	Extremely biased or unexpected distribution of terminal digits Conspicuous absence of a single digit across <u>a large</u>	 Poor granularity of measures, e.g. broad categorisation of continuous measures or use of less precise measurement instruments 		

The NHMRC Clinical Trials Centre, The University of Sydney

nte	grity domain and items	Rating (no issues; some/minor issues; many/major issues)	Justification for rating						
468	ggregate data/publication-level checks								
Ι.	Retraction notices and expressions of concern								
1.1	Retraction notice – study of interest	Select							
1.2	Retraction notice(s) – other study/ies by same authors	Select							
1.3	Expression of concern (EOC) – study of interest	Select							
1.4	Expression of concern – other study/les by same authors	Select							
2.	Provision of individual participant data (IPD)								
2.1	PD not available or not provided on request	Select							
1 .	Communication								
8.1	ack of trialist engagement in communication (see also domain 2. Provision of IPD)	Select							
t,	Ethics approval								
1.17	Absent or inadequate ethics approval	Select							
5.	Trial registration / protocol								
5.17	Absent or retrospective trial registration +/- publicly available protocol	Select							
5.	Randomisation								
5.1	Randomisation - baseline balance/imbalance across groups	Select							
7.	Plausibility								
7.1	Implausible recruitment rate	Select							
7.2	Implausible follow-up	Select							
7.3	Implausible results	Select							
1.4	Implausible author group	Select							
DVE	RALL JUDGEMENT - aggregate data/publication-level checks	Select							

Individual participant data checks		
1. Unusual or repeated data patterns		
1.1 Repeating data patterns within baseline variables	Select	
1.2 Repeating data patterns across baseline variables	Select	
1.3 Repeating data patterns across baseline variables and rare variables	Select	
1.4 Bias in the terminal (rightmost) digits	Select	
2. Baseline characteristics		
2.1 Excessively homogeneous distribution of binary baseline variables, i.e. loss of independence or serial correlation across consecutive observations	Select	
2.2 Excessive imbalances between groups in continuous baseline variables	Select	
2.3 Excessive imbalances in baseline categorical variables between groups	Select	
2.4 Significant difference in variance of continuous baseline variables between groups	Select	
3. Correlations		
3.1 No association between variables known to be highly correlated	Select	
4. Date violations		
4.1 Individual enrolment dates do not fit within study start and end dates	Select	
4.2 Dates (or visits) are not in logical order	Select	

RStudi	D
le Edit	Code View Plots Session Build Debug Profile Tools Help
- 0) 🐨 • 🕞 🔂 🧼 Go to file/function 🛛 🔛 • Addins •
Appe	ndix 2b_IPD-Integrity-Tool_R-mar ×
	🔊 📄 🗖 Knit on Save 🖓 🔍 🛷 Knit 📼 💮 📼
Source	Visual
1.	
2	title: "IPD Integrity Tool vignette"
3	author: "NextGen Evidence Synthesis Team, NHMRC Clinical Trials Centre, University of Sydn
4	output:
5	word_document: default
6	html_document:
7	df_print: paged
8	pdr_document: detault
9	editor_options:
10	markdown:
11	wrap: 72
12 *	
14	This document provides an example R markdown output or 'vignetta' for instructive and il'
15	This document provides an example k markdown output of vignette for instructive and th
16 -	
17	Step 1: Load packages chry
18	Step 1. Loui packages tor
19	Step 2: Load dataset
20	
21	Step 3: Format the data
22	
23	Step 4: Select and label relevant variables
24	
25	Step 5: Run integrity tests
26	
27	
28	
29	
30 -	### Step 1: Load packages
31	Run the code in the 'LOAD PACKAGES' chunk. No changes required.
32	
33 -	{r LUAD FACKAGES, INCIUDE=FALSE}
34	Add install the performant below if they are not already installed
20	The packages below it they are not already installed
30	a construction packages <-
38	"tidwerse"
30	"lubridate"
40	"read"
41	"visidia"

Domain 1: Unusual or repeated data patterns

WHAT: Scrutinise data for repeating patterns within and across baseline variables and rare variables, terminal digit bias

- WHY: generating truly random numbers is very difficult for humans
- HOW TO ASSESS: Are there repeating data patterns that are extremely unlikely to have occurred by chance?

iCOMP commentary

"the highest standards for a meta-analysis"

"sophisticated and validated statistical methods" to identify possible falsified data, that "has not been common in meta-analysis and should set a new standard"

Data patterns

Repeating patterns *within* baseline variables

infant_id	birthweight
	(grams)
1	1940
2	2500
3	2100
4	1850
5	2450
6	1940
7	2500
8	2100
9	1850
10	2450
11	1940
12	2500
13	2100
14	1850
15	2450
16	1940
17	2500
18	2100
19	1850
20	2450

Sheldrick K, "Seven signs of fraud in individual participant data". NSW Health Statewide Biobank Seminar Series, Oct 2021.

Carlisle JB, "False individual patient data and zombie randomised controlled trials submitted to Anaesthesia". *Anaesthesia* 2021, 76:472-9.

Data patterns

Repeating patterns *within* baseline variables

infant_id	birthweight
	(grams)
1	1940
2	2500
3	2100
4	1850
5	2450
6	1940
7	2500
8	2100
9	1850
10	2450
11	1940
12	2500
13	2100
14	1850
15	2450
16	1940
17	2500
18	2100
19	1850
20	2450

 Sheldrick K, "Seven signs of fraud in individual participant data". NSW Health Statewide Biobank Seminar Series, Oct 2021.
 Carlisle JB, "False individual patient data and zombie randomised controlled trials submitted to Anaesthesia". Anaesthesia 2021, 76:472-9.

1.4 Unusual or repeated data patterns: terminal digit bias

Do the plots appear to follow the expected distribution?

					DBP		SBP		weight
Response options			Exceptions: may	40 -		40 -		40 -	
No issues	Some/minor	Many/major	downgrade severity						
	issue(s)	issue(s)	of issue(s)						
- Terminal digits	- Biased or non-	- Extremely biased	- Poor granularity	30 -		30 -		30 -	
follow a uniform or	uniform distribution	or unexpected	of measures, e.g.						
expected	of terminal digits	distribution of	broad						
distribution		terminal digits	categorisation of	tun 20 -		20 -		20 -	
		- Conspicuous	continuous	00				20	
		absence of a single	measures or use of						
		digit across a large	less precise	10		10			
		number of	measurement	10 -		10-		10 -	
		observations	instruments						
				0 -		0 -		0 -	
					0 1 2 3 4 5 6 7 8 9		0123456789		0 1 2 3 4 5 6 7 8 9

DBP = diastolic blood pressure, SBP = systolic blood pressure

value

Domain 2: Baseline characteristics

WHAT: look for excessively different or excessively similar baseline characteristics between groups that are implausible or beyond what is expected by chance

WHY: Generally, in RCTs, baseline characteristics such as age and sex should be balanced between groups, albeit perfect balance is unrealistic.

particularly important for prognostic factors which may influence outcomes

HOW TO ASSESS: statistical tests

2.1 Excessively homogeneous distribution of binary baseline variables, i.e. loss of independence or serial correlation across consecutive observations

If group allocation is genuinely random, we would not expect a participant's baseline values to be dependent on the previous participant. It is difficult to fabricate a dataset to match expected variation in values. The *Wald-Wolfowitz runs test* examines whether baseline data occurs in a random manner based on row order (if organised chronologically).

var	runs	n1	n2	n	statistic	p.value	method	alternative
Diabetes	85	50	270	320	-0.080	0.936	Runs Test	nonrandomness
Smoking	147	168	152	320	-1.527	0.127	Runs Test	nonrandomness

Response options	Exceptions: may			
No issues	Some/minor	Many/major	downgrade severity	
	issue(s)	issue(s)	of issue(s)	
- No significant p	- One significant p	- Multiple	- Variable(s) with	
values, i.e. all	value (i.e. <0.05)	significant p values	significant p values	
≥0.05		(i.e. <0.05)	have a low rate of	
			occurrence, i.e. are	
			rare	

Domain 3: Correlations

WHAT: examines whether expected relationships between variables are present, e.g. we would expect a child's height to increase with age

WHY: Lack of expected correlations may suggest fabricated data

HOW TO ASSESS: Plot and assess two or three known correlations. Assessment requires contextual knowledge and clinical expertise in the area of study.

Are expected correlations present?

 \diamond 8 2500 \Diamond 1500 · birthweight - ¹⁰⁰⁰ birthweight ⁵⁰⁰⁰ \diamond \diamond 1500 $\hat{\mathbf{X}}$ 8 1000 -24 26 28 30 28 29 30 31 32 GA_weeks GA_weeks Pearson correlation estimate: 0.04 Pearson correlation estimate: 0.7

Trial A. Expected correlation present

Trial B. Expected correlation NOT present

8

 \otimes

33

3.1 No association between variables known to be highly correlated

Gestational age at birth (weeks)

Response options	Exceptions: may		
No issues	Some/minor	Many/major	downgrade severity
	issue(s)	issue(s)	of issue(s)
- Correlation	- Correlations	- No association	
between variables	appear too weak	between variables	
is as expected	or too strong, or	known to be highly	
	are in the wrong	correlated	
	direction		

The NHMRC Clinical Trials Centre, The University of Sydney

Domain 4: Date violations

WHAT: Date violations describe impossible dates e.g. recruitment outside the recruitment window, a participant's second visit occurred before the first.

WHY: may arise inadvertently or be indicative of integrity violations

HOW TO ASSESS: Check whether dates occur in logical order. Compare the start and end date of each study with individual enrolment dates (may be obtained from publications, trial registration records, or by direct contact with trialists)

5. Non-random allocation patterns - plot

Time

The NHMRC Clinical Trials Centre, The University of Sydney

- control

treatment

Response options			Exceptions: may
No issues	Some/minor	Many/major	downgrade severity
	issue(s)	issue(s)	of issue(s)
- Similar numbers	-	- Plotted curves	- Smaller trials
in each group and		deviate drastically	may have greater
plotted curves do		from each other	separation in
not deviate from			curves and less
each other			crossing over
drastically (1:1			- Minimisation,
allocation).			blocked or cluster
- If allocation is			randomisation
not 1:1, we would			methods may
expect curves to			explain the pattern
track one another			of sequence
but not cross.			generation

5.3 Item 5.3 - Unexpected imbalance in randomisation day of week

Response options			Exceptions: may
No issues	Some/minor Many/major		downgrade severity
	issue(s)	issue(s)	of issue(s)
- Uniform	- Obvious	-	- For urgent
distribution across	deviations		interventions,
groups for each	from what is		enrolments on
week day, and	expected,		weekends may be
fewer enrolments	e.g. no		expected
on weekends for	participants		- Trial staff only
non-urgent	enrolled on		available on
interventions	Wednesdays		certain days

1 2

Domain 6: Internal inconsistencies

WHAT: inconsistent or illogical values across variables within individual participants

WHY: several large or obvious inconsistencies within a dataset may raise doubts about the reliability of the data.

HOW TO ASSESS: Derive logic rules for each variable to be collected, e.g. date of hospital discharge = date of admission + days in hospital; incorporate these rules into statistical checks

Domain 7: External inconsistencies

WHAT: discrepancies between a trial's IPD and published reports

WHY: Several or large unexplained discrepancies raise concerns about the validity and trustworthiness of the data.

HOW TO ASSESS: Plot all variables provided in the IPD dataset and tabulate summary statistics for each, e.g. mean, median, range, etc. Cross-check these against any published trial reports, including appendices and supplements.

Domain 8: Plausibility

WHAT: reasonableness of missing data and event rates

WHY: No or relatively few missing data should trigger concern in most cases (depending on follow-up times and sample size), as should identical missing values across groups; or extreme event rates (particularly for rare adverse events)

HOW TO ASSESS: Check missing values, compare event rates with expected rates based on literature, setting, biological mechanisms, and expert advice..

Domain 8: Plausibility

Which of these are questionable?

Example 1: Intense exercise intervention, 0.5% missing data at 1 year follow up (n=500)

Example 2: In hospital mortality of patients admitted with COVID (n=40, no missings)

Response options	Exceptions: may		
No issues	Some/minor	Many/major	downgrade severity
	issue(s)	issue(s)	of issue(s)
•No/few/minor inconsistencies that can often be resolved with trialist	 Implausibly few missing data compared to expected Identical missing values across groups 	•No missing data	•(Close to) 100% follow-up may be achieved for outcomes assessed immediately after intervention delivery

Overall assessment

	How to assess	No concerns	Some concerns	Major concerns
OVERALL ASSESSMENT	Provide an overall rating based on all items	No issues identified, OR any issues adequately resolved or had a reasonable explanation	≥1 minor issue identified that could not be adequately resolved and had no reasonable explanation	≥1 major issue identified that cannot be adequately resolved or had a reasonable explanation
		The study may be considered sufficiently trustworthy to contribute to the evidence base, i.e to include in meta- analysis, or to be considered for publication	Decision on how to proceed should be based on circumstantial evidence or pending further information	The study should NOT be considered trustworthy enough to contribute to the evidence base, i.e. do NOT include in meta- analysis or consider for publication

IPD – integrity issues

- All studies had multiple integrity issues
- Many issues required individual participant data to detect

