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Abstract 
A closed-form solution is proposed for determining the buckling of composite plates under combined 
thermal-mechanical loading. The plates are subjected to a constant temperature increment, combined 
with applied displacement, while transversal in-plane expansion is restricted. The plates are studied 
using Von Kármán equations in combination with classical lamination theory, being the study limited 
to symmetric and balanced laminates. The problem is formulated in terms of in-plane displacement 
fields and solved using the Galerkin method. An analytical formula is obtained that relates critical 
temperatures to applied plate displacement. An example of a possible application is presented in the 
form of graph and is verified by finite element analysis. The obtained formula can be used during 
initial design for sensitivity analysis and optimization, and also for deriving specific buckling shapes. 
 
 
1. Introduction 
 
Thermal buckling has been a topic of research since the early stages of supersonic flight, when the 
focus was on structures made of metallic materials [1-3]. In the following decades, several research 
activities were conducted to investigate the thermal buckling of laminate composite materials. Among 
the papers available in literature are those of Whitney and Ashton [4], Tauchert [5], Meyers and Hyer 
[6], Nemeth [7] or Jones[8]. However, most studies analyse thermal buckling with restricted 
expansions: plate edges are kept straight and constant in length, i.e. the original dimensions of the 
panel remain unchanged. Such boundary conditions prevent the plates from the introduction of 
external mechanical loads, such as compression or shear. There are, however, a few cases where the 
authors consider load introduction, such as the study of Nemeth [9] for infinite plates.  
 
Although in the last decade extensive analytical research has been done in the field of pure mechanical 
buckling [10-13], there are few studies that explore combined thermal-mechanical buckling, like the 
one of Jones [14] for metallic materials, or the study of Abdalla et al. [15] for the optimization of 
tailored thin laminate panels. Being thermal-mechanical buckling a basic load case in aeronautical 
structures, there is a clear need of compact formulas valid for initial design. 
 
An analysis of flat, symmetric and balanced composite laminated plates is here presented, where 
expansions are fully constrained at two opposite edges while temperature increment is applied and 
mechanical load is introduced in the form of axial displacement. The obtained closed-form solution 
can be applied to composite structures of the new supersonic aircrafts. 
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2. Analytical Formulation 
 
A rectangular plate of length a and width b is considered, as shown in Figure 1. The plane XY 
coincides with the mid-plane of the plate and the Z axis is perpendicular to this plane. The plate 
presents the boundary conditions reported in equations (Eq. 1): 
 

At :  
 

At :   

    (1) 

  
 

   

where , ,  are the displacements of the plate mid-plane in the respective ,  and  directions. 
The plate is subjected to length variation  along  axis. Cases of plate stretching are represented by 
positive values of , while for cases of plate shortening  assumes negative values. The whole plate 
experiments a uniform temperature increment  respect to a stress-free state of equilibrium. The 
plate is analysed by means of Von Kármán plate theory in combination with classical lamination 
theory. 
 

 
 

Figure 1. Composite plate subject to temperature and displacement. 
 
 
The laminate stacking is assumed to be symmetric and balanced, and material properties are 
considered to remain constant within the analysed range of temperatures. The in-plane behaviour of 
the laminate is ruled by the membrane constitutive equation (Eq. 2): 
 
 

 

  

(2) 

 
where , ,  are the force resultants at the plate edges, , ,  are the thermal force 
resultants, the terms , ( ) are the membrane stiffness terms from the classical lamination 
theory, and the comma followed by an index denotes differentiation with respect to that index. For 
homogeneous temperature distributions, the thermal force resultants can be expressed as in next 
equations (Eq. 3):  
 

   
 

(3) 
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where  and  are the thermal force resultant per unit change of temperature. For symmetric and 

balanced laminates,  vanishes and the remaining quantities assume the form given in presented 
equations (Eq. 4): 
 

  
 

(4) 
 
where and  are the laminate expansion coefficients, as defined by Hyer [16]. The out-of-plane 
equilibrium equation can be expressed as in following equation (Eq. 5): 
 
  (5) 

 
where the  ( ) represent the laminate bending and twisting stiffness terms from the 
classical lamination theory. The in-plane displacement is described in linear function of the total 
variation of length  as in following equation (Eq. 6): 
 

 
(6) 

 
while . The out-of-plane displacement can be expressed as a Fourier series as in following 
equation (Eq. 7):  
 
 

 
 

 

(7) 

 
where  is the amplitude of a generic Fourier coefficient, and  are the number of half waves 
for that particular series term in  and  direction, respectively. The force resultants are determined by 
introducing the displacement field presented in Eq. 6 into the membrane constitutive relation (Eq. 2), 
yielding the following equations (Eq. 8): 
 

  
 

(8) 

 
After substituting Eq. 7 for the out-of-plane displacements and Eq. 8 for the force resultants into Eq. 5 
for out-of-plane equilibrium, the following expression (Eq. 9) unfolds: 
 
 

 
 
(9) 

 

 

 
The Galerkin method is based on the solution approximation of a differential equation by means of an 
assumed solution or trial function, here Eq. 7. Plugging this into Eq. 5 yields a residual which has to 
be minimized. This residual is given by the expression at the left of the equal sign in Eq. 9. The 
evaluation of the residual for a generic term of the Fourier series yields a generic equation, which is a 
function of a generic coefficient  and the large bracket in Eq. 9. Equation solutions imply either 

 being zero, also known as the trivial solution (i.e. the plate remains flat) or the content of the 
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bracket being zero. Solving the resulting equation with respect to , the following equation (Eq. 10) 
respect to  is obtained: 

 

 
 

(10) 

 
 
Eq. 10 represents states of equilibrium for which the out-of-plane deflections are nonzero. For each 
state of equilibrium given by the number of half-waves  and , the obtained Eq. 10 relates plate 
length variations  with thermal increments . For a certain , the buckling temperature is given 
by the configuration with the combination of  and  that delivers the lowest . 
 
 
3. Application 
 
An example is here presented in graphical form for a plate of dimensions 375 mm x 575 mm, made of 
AS4/3502 composite material, which properties are shown in Table 1. The plate has a quasi-isotropic 
sequence . The values of laminate expansion coefficients are 

. 
 
 

Table 1. AS4/3502 lamina properties. 
 

 
 

 
 

 
 

  
 

 
 

 
 

155000 8070 4550 0.22 -0.07 30.10 0.127 
 
 

For the described plate a diagram of thermal increment  versus applied length variation is 
obtained from Eq. 10 and is reported in Figure 2.  
 
Starting from a buckling shape with  a line is obtained by plotting the resulting 
expression and is represented as dashed in the Figure. By leaving now  fixed and assuming 

 analogue dashed lines can be generated, being these lines related to buckling shapes 
with multiple half-waves in  direction. Repeating the operation with ,  dashed 
lines related to buckling shapes with multiple half-waves in  direction are reported.  
 
Entering now Figure 2 with a given length variation , the temperature at which the plate buckles is 
determined by the dashed line delivering the lowest value of . These lines intersect each other so 
the buckling shape defining the lowest  will change depending on the mechanical loading condition 

. The result of collecting all the lowest  for any given is the buckling curve, represented as 
bold in Figure 2, and is constituted by different segments of several intersecting dashed lines. The 
buckling curve divides the loading plane (, ) into two subspaces, corresponding to buckled and 
unbuckled states. The intersection of the buckling curve with the horizontal axis corresponds to the 
loading situation in which the plate buckles under pure mechanical loading ( ); for this case, 
the length variation has a value of  and the plate buckles under the shape of one half-
wave in both  and  directions. Conversely, the intersection with the vertical axis represents the case 
in which the plate remains constant in length ( ) and buckles under pure heating. For this 
case, the thermal increment has a value of , and the buckling shape has only one half-
wave in both  and  directions. 
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Figure 2. Buckling curve for thermal-mechanical buckling of composite plate. 
 
 
If, for example, the plate experiments a stretch of , the buckling temperature increases 
significantly, rising up to  and the buckling presents a mode with two half waves in  
direction. It is possible to note that under heating conditions, plate stretching has stabilizing effect 
against buckling. States of stretching and cooling induce biaxial tension states in the plate so buckling 
under this loading condition is not possible. Conversely, if the plate experiments a shortening of 

, buckling temperature descends to . Under states of shortening and 
heating, the plate experiments a state of biaxial compression that noticeably reduces the buckling 
temperature.  
 
Considering now a length variation of , the shortening is larger than the critical 
shortening for pure mechanical loading. In order to prevent the plate from buckling, it should be 
cooled down to temperatures lower than ; and the buckling pattern corresponds to 
three half-waves in the axial direction. 
 
Finite element analysis were performed in Abaqus for verification. The plate is modelled with shell 
elements S4R, with element size of 20.8 mm x 20.5 mm. The plate is subjected to the boundary 
conditions described by the set of Eq. 1, and is loaded under combinations of mechanical load and 
temperature. The results of the eigenvalue analyses are reported in Figure 2 with the symbol of a star. 
Images of the buckling shapes obtained using Abaqus are also reported. 
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Figure 2 is restricted to a specific material, stacking and plate geometry, but similar figures can be 
generated for plates with different dimensions and materials by applying Eq. 10. These graphical 
results deliver valuable information for the initial phases of structural design. The deduced Expression 
(Eq. 10) can be readily implemented in optimization algorithms, allowing to obtain thermal-
mechanical buckling with low computational effort. It can be also used for deriving targeted buckling 
shapes. 
 
 
4. Conclusions 
 
The combined thermal and mechanical buckling behaviour of thin, symmetric and balanced laminated 
plates was investigated. A formula was obtained, and a diagram illustrating the buckling behaviour of 
a rectangular plate was presented. The diagrams reports the buckling curve that divides the 
displacement-temperature loading space into two subspaces, corresponding to buckled and unbuckled 
states. It is shown how mechanically loaded laminated plates can be either stabilized or destabilized by 
either cooling or heating. The presented graph shows as well how buckling shapes can be achieved 
under particular loading conditions. The obtained results offer valuable insight for structural initial 
design. The deduced equation, due to its simplicity, can be used for sensitivity analysis and 
optimization. 
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