PLATFORM: Study of the integration and characterization of new materials manufactured with carbon nanotubes in current manufacturing processes in the aeronautical sector

Authors: L. Sánchez-Vicente, M. R. Gude, S. Calvo-del Valle, M. Martínez-Miranda, B. López-Romano, I. Gaztelumendi-Lizarraga, S. Flórez-Fernández; A. Vavouliotis, P. Latko-Duralek

a FIDAMC, Foundation for the Research, Development and Application of Composite Materials, Avda. Rita Levi Montalcini 29, 28906 Getafe, Madrid, Spain
b TECNALIA, Industry and Transport Division, Mikeletegi Pasealekua 2, E-20009, San Sebastian, Spain
c ADAMANT COMPOSITES Ltd., Agias Lavras Str., Thesi Skamnies, 26504, Ano Kastritsi-Patras, Greece
d TMBK Partners Sp. z o.o., Adolfa Pawińskiego 5A, 02-106 Warsaw, Poland

Keywords: nanomaterials, carbon nanotubes, nano-enables product, manufacturing processes, mechanical properties, electrical properties, aeronautical demonstrator.

PLATFORM project turns up for the need to improve non-intrinsic properties of composite materials, principally its mechanical and electrical properties. The main objective of the project is to study the capacity to introduce three new nano-enable materials into the current manufacturing processes in aeronautical sector, improving the properties of the raw material.

Several material developments are made with carbon nanotubes in three different formats: buckypapers [1], thermoplastic doped veils [2] and CNT treated prepreg [3].

The implementation of each material has been studied in current infusion processes, more concretely manufacturing by RTM (Resin Transfer Moulding) [4] and manufacturing with prepregs cured in an autoclave [5].

The studied possibilities are:

- Buckypapers incorporated and doped veils embedded in prepreg laminates.
- Full manufacturing with treated prepreg.
- Buckypapers integrated and doped veils included in RTM laminates.

All manufactures panels were studied physical-chemically and mechanically. In this study are shown the principally obtained results in the project, and the final selection to manufacture a final demonstrator (Figure 1).
References:


