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Abstract 

Fiber Reinforced Polymer laminates (FRP) have properties, which are highly dependent on the ply 

fiber orientations and which can be designed for optimum laminate performance. The purpose of this 

study is to investigate effect of matrix cracking on the mechanical properties of angle-ply FRP 

laminates. Carbon and glass fiber reinforced polymer laminates (CFRP and GFRP) are tested. The 

laminates with layups [θm
(2)

/θn
(1)

]s cured by using autoclave method are loaded monotonically and 

cyclically to obtain their mechanical properties and the effect of matrix cracks on the properties. Some 

of the effects include reduction of laminates’ stiffness and residual strains after unloading. In order to 

obtain higher crack densities in specimens, artificial cracks method was introduced in this study, 

where notches were made at the edges of some specimens before tested in tension. The measured 

stiffness reduction as a function of the crack density is compared to an analytical prediction for 

cracked angle-ply laminates based on a variational stress analysis. The experimental results for 

stiffness reduction agree well with the analytical results. Understanding the behavior of damaged 

cross-ply and simple angle-ply laminates is of high importance for prediction of damage effects on 

laminates with more complex configuration, e.g. with quasi-isotropic layups. 

 

 

1. Introduction 

 

Fiber Reinforced Plastics (FRP) are used in many industries, such as aeronautical, automotive, 

construction, etc. While many designs, especially in aeronautical applications, aim at composite 

structures made of quasi-isotropic material, various stacking sequences can be designed for a specific 

composite structural element by modifying the distribution of ply orientations through the laminate 

thickness. With different combinations of fiber orientations, ply thicknesses and stacking sequences 

that can by suggested by the designers, understanding and characterization of damage formation and 

its effects on the laminate effective properties can be quite complicated. However, quite often these 

complex layups can be considered as an assembly of two main types of laminates, namely `cross-ply’ 

laminates, with fiber configuration of 0̊ and 90̊, and `angle-ply’ with the generic layup of [θm
(2)

/θn
(1)

]s. 

Understanding the basic damage behavior and changes in these two types of laminates due to damage 

can be a step in understanding laminates with more complex configuration.  

 

Many damage modes can be observed in laminates, such as transverse cracking, delamination, fiber 

fracture, longitudinal splitting, etc. Usually during tensile loading, cross-ply and angle-ply laminates 

would initially demonstrate formation of matrix intralaminar cracks in the most off-axis plies, which 
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normally originate from the free edges, and propagated in the width direction of the coupon. These 

cracks lead to reduction of the laminate stiffness, residual strains after unloading, and other 

phenomena. The main aim of the present study is to investigate the mechanical properties, damage 

formation and its effect on the mechanical properties of angle-ply FRP laminates. Laminates with 

cross-ply and unbalanced angle-ply stacking sequences [θm
(2)

/θn
(1)

]s prepared from two different CFRP 

prepregs and one GFRP prepreg are studied. 

 

 

2. Methods and Materials 

 

2.1.  Specimen 

 

The materials used in this study is shown in Table 1. The prepregs are stacked according to the 

stacking sequences shown in Table 2 and cured in an autoclave at temperature of 130 degree Celsius 

and pressure of 0.2 MPa. The specimen’s measurements are shown in Figure 1. 

 

Table 1. Type of materials. 

 

 CFRP[1] CFRP[2] GFRP 

T700SC/2500, 

Torayca 
T700SC/2592, Torayca 

GE352G135SB, Mitsubishi 

Rayon 

Ply 

thickness 
0.05 mm 0.15 mm 0.101 mm 

Type Prepreg (preimpregnated composite fiber) 

 

Table 2. Laminate structures and thicknesses. 

 

Materials Laminate structures Thickness (mm) 

CFRP [1] (T700SC/2500) [03/9024/03], [03/7524/03], [03/4524/03] 1.50 

[03/9036/03], [03/7536/03], [03/4536/03] 2.10 

CFRP [2] (T700SC/2592) 
[0/908/0], [0/608/0], [0/458/0] 1.47 

[0/9012/0], [0/6012/0], [0/4512/0] 2.06 

GFRP (GE352G135SB) [03/9012/03] 1.80 

[03/9024/03], [03/7524/03] 3.00 

[-153/7524/-153], [03/6024/03] 3.00 

 

 
Figure 1. Specimen’s measurement. 

 

2.2.  Artificial cracks 

 

In contrast to cross-ply laminates, crack formation in angle-ply laminate requires significantly higher 

tensile loads due to the higher material stiffness. In order to increase the range of attained cracks 

densities, artificial crack method is introduced in this study when notches are formed at the both edges 

of the specimen by using a knife before it is pulled in a tensile test machine with cross head speed of 

1mm/min to a specific load. Then the specimen is unloaded back to zero and the notched edges were 

cut by using composite material cutting machine (AC-300CF, Maruto Testing Machine) at ±5mm 
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from the edges. To detect the artificial cracks induced, observation in an X-ray machine was carried 

out before it was tested in tension. 

 

2.3.  Tensile tests and measurement 

 

Two types of experiments were carried out using Tensilon RTF-1350 A&D tensile test machine: 

monotonic and loading-unloading tensile tests. Both of the experiments were performed with the cross 

head displacement speed of 1 [mm/min]. The mechanical properties obtained from monotonic tensile 

test are tensile stress, longitudinal strain, transverse strain, the Young’s modulus and Poisson’s ratio. 

The loading-unloading tests were performed to investigate the mechanical properties affected by crack 

formation. For CFRP laminates, as the laminates are opaque, crack observation was done by using X-

ray, while for semi-transparent GFRP laminates, cracks were observed in-situ using a DSLR camera. 

Strain gauges were used to measure strains in the loaded and unloaded laminates. For more accurate 

strain readings, three uniaxial strain gauges were stacked in the loading direction. In this study, the 

crack density is defined as the number of cracks penetrated in the width direction over the length of 

strain gauges. 

 

 

3. Results and Discussions 

 

3.1.  Monotonic tensile test 

 

Strain gauges were attached in both the longitudinal and transverse directions for strain measurements 

in both the directions. The Young’s modulus of every laminates was calculated at small strains of 

0.1~0.3% when no cracks are typically formed. Nonlinearity of the stress-strain curves is correlated 

with the formation of cracks.  

 

Figure 2 shows the stress-strain curves for CFRP[1] specimens: (a) [03/9024/03] and [03/9036/03], (b) 

[03/7524/03] and [03/7536/03], and (c) [03/4524/03] and [03/4536/03] laminates. Comparison of CFRP 

laminates with 90
o
 ply of different thicknesses indicates that the laminate with the thicker transverse 

ply fail at lower stress than the laminate with the thinner transverse ply. Similar behavior can be 

observed in the angle-ply laminates where thinner laminates showed higher stiffness and strength, as 

can be seen in Figure 2(b & c). 

 

For laminates with the same number of plies and the off-axis angle decreasing from 90
o
 to 45

o
, there 

are no remarkable differences in the Young’s modulus. The Poisson’s ratio, however, increases 

significantly as the off-axis angle decreases, as would be expected, since the contribution of the mid-

ply matrix to strain in the transverse direction increases. These results for the Young’s modulus and 

Poisson’s ratio are in agreement with the Classical Laminate Theory. It can also be observed that 

variation of the off-axis angle has a marginal effect on the tensile strength of the laminates. 

 

Figure 2. Strain-stress curve for CFRP[1] laminates with different orientation of the off-axis ply: (a) 

90, (b) 75 and (c) 45
o
. 
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3.2.  Loading-unloading tensile test 

 

Nonlinearity in the stress-strain curve obtained from monotonic tensile loading is mainly associated 

with formation of new cracks in the laminate. Once new cracks have formed, subsequent unloading 

follows a new linear stress-strain relationship, which reflects the effect of the formed cracks on the 

properties of the laminate. Therefore, unloading that does not induce additional damage in the 

laminate allows to observe the effects of damage in a more clear way. 

 

Figure 3 shows the stress-strain curves recorded during cyclic loading for (a) CFRP[1] [03/7536/03] and 

(b) CFRP[2] [0/608/0] laminate. It can be seen that the gradients of stress-strain curve gradually 

decrease with every cycle due to a decrease in stiffness of the laminates. The stiffness was calculated 

at strain of 0.1%~0.3%, 0.2%~0.4% or 0.3~0.5 % following formation of new cracks at every cycle. 

The figure also demonstrate existence and a gradual increase in residual strains as the laminates are 

unloaded back to zero stress at the end of each loading-unloading cycle. This is related to relief of 

curing stresses due to formation of intralaminar cracks. From the result for laminates with different 

thickness of off-axis plies, nonlinearity associated with onset of cracking is observed at higher strains 

in laminates with thinner off-axis plies. Similar results were obtained for the laminate configurations 

that have off-axis angle of 45
o
, 60

o
 and 90

o 
for all CFRP[1], CFRP[2] and GFRP. Laminates with 

lower off-axis angles, such as 45
o
 or 60

 o
, started to show nonlinearity at a higher strain (Figure 3(b)). 

In laminates of the same thickness the strain of initial nonlinearity increases as the off-axis angle 

changes from 90
o
 to 45

o
. Therefore, the changes in off-axis angle have a significant effect on the 

cracking onset strains.  
 

 

Figure 3. Strain-stress curve for loading-unloading tensile test:  

(a) CFRP[1] [03/7536/03] (b) CFRP[2] [0/608/0] laminate. 

 

3.3.  Crack observation 

 

For CFRP[2] cross-ply [0/9012/0], [0/908/0] and all CFRP[1] laminates, X-ray images were taken after 

unloading and removing from the tensile test machine, followed by remounting the specimens in the 

machine. For CFRP[2] [0/6012/0], [0/608/0], [0/4512/0] and [0/458/0] laminates, the X-ray images were 

taken after the artificial notches were removed. For GFRP laminates, due to its semi-permanent 

properties, cracks formation can be observed in real-time, tracing the crack density-strain relationship 

can be investigated. The cracks were observed and counted at specific area on the specimen which is 

along the length of strain gauge.  

 

(a) CFRP laminates 

Figure 4 shows X-ray images of CFRP[1] [03/7524/03] laminates after a loading-unloading tensile test. 

Initially at lower stress and strain, the results showed that most of the cracks were formed at the edges 

of the laminates without penetrated through the width of the coupons. As the applied strain increases, 

more tunneling cracks propagate through to the other edge of the coupon. Comparison of crack 

formation in laminates of different thicknesses indicates that crack initiation at the coupon edges occur 
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at lower strains in thicker laminates. Both crack propagation in the width direction and the rate of new 

crack formation is slower in the thicker laminates. For laminates with different off-axis ply angle, 

decrease from 90
o
 to 45

o
 makes crack formation more effort demanding. For example, in laminates of 

off-axis angle of 45
o
, none of the edge cracks propagated entirely through the coupon width. Similar 

results were obtained for CFRP[2] laminates.  

 

Figure 4. X-ray images of CFRP[1] [03/7524/03] laminate  

(a) σ=300[MPa] ε=1.10[%], (b) σ=340[MPa] ε=1.31[%], (c) σ=440[MPa] ε=1.75[%]. 

 

 (b) GFRP laminates 

In contrast to the cracking processes in CFRP laminates described above, cracks in GFRP laminates 

crossed the entire width of the laminate instantaneously. Cracks in GFRP laminates also formed at a 

lower stress and strain compared to CFRP laminates. Since GFRP laminates are transparent, new crack 

formation can be observed in-situ, while recording the corresponding values of applied strain. Figure 5 

shows snapshots of a angle-ply coupon at different stress/strain levels, demonstrating increasing crack 

density with the applied strain. The laminate with layup [03/7524/03] showed gradually increasing crack 

density with increasing applies strain. Comparison of all laminate configurations indicates that fewer 

cracks form in laminates with smaller angles of the off-axis plies at the same applied strain. 

 

Figure 5. X-ray images of GFRP [03/7524/03] laminate 

(a) σ=160[MPa] ε=1.47[%], (b) σ=180[MPa] ε=1.85[%], (c) σ=200[MPa] ε=2.36[%]. 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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3.4.  Stiffness reduction due to matrix cracking and comparison to variational analysis 

 

Stiffness reduction is typically presented by normalizing the stiffness of the cracked laminate by the 

stiffness of the virgin laminate. Crack density can be defined as the total length of cracks propagated 

in the off-axis ply direction within the observation area divided by the area, or alternatively, the crack 

density is reciprocal of the average (shortest) distance between adjacent cracks. 

 

Figures 6 and 7 show the results for stiffness reduction vs crack density obtained experimentally and 

analytically for CFRP[2] and GFRP. The experimental data represents results for two or more laminate 

specimens tested in loading-unloading, as well as those with artificially induced cracks. The analytical 

curves represent the results of a variational analysis. For the layups in the present experimental study, 

the variational analysis of Vinogradov and Hashin (2010) is the most suitable, as it considers laminates 

of the type [θm
(2)

/θn
(1)

]s. However, following the original assumptions of Hashin (1986), the method 

assumes a piece-wise constant distribution of stresses in the thickness direction, which for some, 

especially thick laminates, tends to underestimate the Young’s modulus, when compared to the 

experimental data presented here. The more general variational approach of Vinogradov (2015), which 

is used herein, assumes a linear stress distribution in the thickness direction and allows ply refinement, 

when plies can be subdivided into several sub-plies, leading to a more accurate description of the 

stress field, and consequently, a better estimate for the effective Young’s modulus. 

 

As can be seen in all of the figures, for all laminate layups and materials, the differences in stiffness 

reduction of the thin and thick laminates can be seen quite distinctively, when higher stiffness 

reduction is observed in the thicker laminates with the same off-axis ply orientation. At the same time, 

laminates with 0
o
 outer ply and the same thickness show a marginal effect of the middle ply 

orientation on the normalized Young’s modulus, e.g., compare laminates with 8 mid-ply laminae and 

different orientations (upper curves) in Figures 6. In Figure 6(a), experimental data for an additional 

CFRP[2] laminate with layup [-15/7512/-15] is included, which has not been mentioned in the previous 

sections. It can be seen that rotation of the cross-ply [0/9012/0] by 15
o
 leads to dramatic differences in 

the normalized stiffness reduction rates. Much smaller differences are predicted analytically for 

rotation of GFRP [03/9024/03] by -15
o
 to form [-153/7524/-153], as shown in Figures 7(a) and 7(b), 

however, as described above, this laminate failed after just one crack has formed within the 

observation zone. 

 

 

Figure 6. Stiffness reduction-crack density relationship of CFRP[2] laminates. 
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Figure 7. Stiffness reduction-crack density relationship of GFRP laminates. 

 

In view of the fact that the variational analysis provides the lower bound for stiffness reduction and 

crack density relation, the analytical and experimental results for the studied laminates are in good 

agreement, as most of the experimental data points stay on or slightly above the analytical curves. 

However, there are several ocasions where experimental data are lower than the analytical prediction. 

Possible reasons for this could be variation in the secimen properties and formation of uncounted 

cracks close to, but outside the observation zone, and could effect the results. Some dispersion in the 

experimental data could also be caused by randomness in the mechanical properties of the material, 

effects of the notches at the edges of the specimen on the 0
o
 outer ply. In addition, the CFRP[1] 

laminates showed multiple small cracks occurred at the free edges which did not penetrate along the 

specimen, which could affect the stiffness reduction measurements as well.  

 

4. Conclusion 

 

Intralaminar damage behavior and its effects on the mechanical properties of several angle-ply FRP 

laminates were investigated. CFRP and GFRP laminates with fiber configuration of [θm
(2)

/θn
(1)

]s were 

cured by using the autoclave method. In order to study the damage behavior and its effects, the 

laminates were loaded monotonically and cyclically and cracks observations were carried out. In some 

angle-ply laminates, artificial cracks were create before the laminates were monotonically loaded, so 

that higher crack densities could be attained. From monotonic tensile tests, we understand that as the 

middle off-axis ply becomes thicker, the Young’s modulus and maximum tensile stress of the 

laminates decreases. On the other hand, the differences in off-axis orientations have marginal effects 

on the stiffness and strength of a laminate. From the cyclic loading results, for CFRP laminates of the 

same thickness, changes in the off-axis angle from 90
o
 to 45

o
, earlier cracking initiation and observed 

nonlinearity of the stress-strain curve were recorded. Changes in the transverse strain, which reflect 

the effective Poisson’s ratio of the laminate, were larger in laminates with off-axis angle 45
o
 than in 

laminates with off-axis angle 90
o
. For CFRP laminates, it can be observed that first cracks mostly 

formed and accumulated at free edges. Crack propagation rates in the width direction were dependent 

on the thickness of the middle ply. In contrast to CFRP laminates, cracks in GFRP laminates formed 

instantaneously propagating in the width direction. Stiffness in laminates with the thicker off-axis plies 

reduced more. The experimental data and predictions of the variational analysis are found in good 

agreement for the Young’s modulus of the cracked laminate. Systematic analysis of residual strains 

due to increasing crack density will be addressed in future publications. 
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