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Abstract 

Fused Deposition Modelling (FDM), a form of additive manufacture, is typically constrained to 2.5D, 

vertically stacked layers; curved layers have been shown to possess improved mechanical properties and 

surface finish but require complex toolpath generation. This paper demonstrates methods of generating 

thin-walled FDM components with curved layers suited for use within aerospace composite sandwich 

panels; secondary structures containing high complexity and low production volumes ripe for 

manufacture using additive techniques.  

 

An industrial robot arm and a PC-based open-source controller allowed for significantly higher degrees 

of toolpath complexity for FDM than realised using conventional systems. Three use cases are presented 

to describe the manufacture of FDM components, with the first demonstrating deposition on a rotating 

cylinder, allowing for customised stiffening and reinforcement. The second shows a curved surface 

defined by an STL file, with the nozzle orientated to remain perpendicular to the surface, and finally the 

manufacture of a shaped aerofoil cores with curved layers conforming to the outer surfaces. The 

application developed over the course of this work shows the high levels of manufacturing flexibility 

achievable with arm-based FDM, and its potential use within the aerospace industry where optimised 

and complex components are manufactured in low volumes. 

 

 

1. Introduction 

 

Additive Manufacture (AM) is a process which allows the manufacture of components directly from 

digital CAD data through the deposition of successive layers of material, enabling the economic 

productions of complex geometries in low production volumes [1, 2]. Fused Deposition Modelling 

(FDM) is an AM process where molten polymer is extruded through a moving nozzle, typically mounted 

to a gantry-style 3-DOF system. Within the aerospace industry, AM technologies are well suited to the 

required complexity and production volumes realised, with materials such as Ultem 9085 certified for 

use within aerospace cabin components [3]. 

 

Sandwich panels, commonly used as secondary structures in the aerospace industry, are comprised of a 

core material placed between two high modulus face sheets, providing an excellent stiffness to weight 

ratio in complex geometries [4, 5]. Traditional manufacture involved cores being comprised of multiple 

sections of Nomex honeycomb spliced together to meet geometric and strength requirements; FDM has 

been shown to be suited to the manufacture of such complex cores, with previous work demonstrating 
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the application of thicker walls for local reinforcement on a double curvature panel [6], the achievement 

of higher strengths than Nomex [7], and the capability of manufacturing cores with curved layers [8]. 

 

The deposition of curved layers provides significant advantages over the traditional, vertically stacked, 

“2.5D” manufacture. Strong anisotropy exists in FDM components due to the inter-layer bonding [9], 

however Singamneni et al. have shown that a bridge-shaped structure printed with curved layers can 

possess significantly higher strength under a three-point bend test than that manufactured using 

traditional FDM [10]. A constraining factor is the limited software available for curved layer slicing, 

with most code written specifically for a given application; a review of curved layer slicing approaches 

was undertaken by Zhao et al. [11].  

 

The traditional gantry-style printers are unsuited for curved layer manufacture due to the low z axis 

speed limiting the available curvature [8, 12]. Delta robots are capable of manufacturing layers with 

higher curvature [8], but the maximum curvature is constrained by the constant orientation of the print 

head risking collision with the component. To reliably manufacture curved layers over a variety of 

shapes, higher degree of freedom (DOF) systems must be used, with Stewart Platforms used by Song et 

al. [13] to demonstrate the capability of scanning and printing directly onto a curved surface, and Dröder 

et al. [14] presenting the concept of “Additive Finalisation”, where a mass produced base component 

has finishing features deposited by FDM. 

 

Robotic arms have a significantly larger workspace than other structural layouts, and the capability to 

orientate the FDM nozzle in up to 6-DOF [12]. A project at MIT demonstrated compound fabrication, 

with high speed deposition of a foam structure followed by subtractive machining to achieve a higher 

dimensional accuracy [15]. Several academic institutions are currently investigating the use of robotic 

arms for additive manufacture, such as Brooks et al. [16] from Massey University, NZ, demonstrating 

the use of a fixed extruder for deposition on a hemispherical mandrel held by a 6-DOF robot arm. More 

conventional layouts with a fixed bed and movable extruder include Beihang University, China [11], 

Virginia Tech, USA [17], and Florida University, USA [18]. Within industry, Stratasys demonstrated 

the “Infinity Build” concept, showcasing tool changing capabilities and additive finalisation onto curved 

surfaces targeted at the automotive and aerospace industries [19], and arm-based AM has been 

implemented by a number of construction companies for architectural projects [20]. 

 

This paper begins with an introduction to the robotic FDM system developed at the University of Bristol. 

Descriptions of the process to generate print paths for the localisation and manufacture of a structure on 

a rotating cylinder, and deposition onto a curved substrate are presented, and followed by a 

demonstration of manufacture of an aerofoil-shaped structure with curved layers. Finally, the 

conclusions are presented with details of future work. 

 

 

2. Robotic arm-based FDM system 

 

The robotic cell at the University of Bristol is comprised of a 6-DOF ABB IRB 140 arm with a 2-DOF 

IRBP A250 positioner, powered and controlled through an IRC5 controller; the robot cell is shown in 

Figure 1. An FDM nozzle was attached as an end effector, comprised of a BondTech extruder with an 

E3D v6 hotend, with temperature and extrusion speed regulation provided through an Arduino Mega 

with a RAMPS 1.4 breakout board. A 0.6 mm nozzle provided a balance between print quality and 

maximum print speed. 
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Figure 1: ABB Robot Cell at the University of Bristol consisting of an ABB IRB 140 arm and IRBP 

A250 positioner 

RAPID is the native language implemented on the IRC5 controller for robot positioning, but due to the 

complex toolpaths required for FDM objects, it is desirable to control the robot directly from a PC; 

Brooks et al. estimated the full print would consist of 180,000 lines of RAPID code [16]. PC control 

was achieved over an Ethernet connection through the adaption of the open source Open-ABB software 

package [21], with an extra implementation of an increased buffer complexity to transmit, store, and 

execute movements, with the adapted code available at [22]. Digital signals from the IRC5 controller 

supplied the extruder with the on/off demand and the required extrusion speed; a more detailed 

description is provided in [12]. 

 

To generate a toolpath to manufacture an FDM component, the transformation from the robot base frame 

to the work object coordinate system, and from the tool centre point (TCP) to the nozzle tip was first 

defined; in a majority of cases these are direct translations. A series of poses are then supplied with a 

Cartesian position and a quaternion describing the transformation from the work object coordinate 

system to the tool coordinate system; an additional option allows for positioner movement, as used in 

Section 3. This buffer is then executed with “fine” movements at the beginning and end of the executed 

poses to ensure the digital output to the extruder is synchronised with the motion. All toolpath generation 

and control software on the PC was implemented using Python 2.7. 

 

 

3. Cylindrical core manufacture 

 

3.1 Localisation of cylinder in relation to robot base frame 

 

As there were no sensors fitted to the robot arm to track the location of the cylinder, the kinematics 

between the base coordinate frame of the robot (c0=xyz0) and the position on the cylinder surface during 

a rotational movement must be first identified. This was comprised of the transformation from c0 to the 

centre of rotation (c1=xyz1), the rotation about the z axis of c1 to a rotated coordinate frame (c2=xyz2), 

and the location of the cylinder within c2 (xcyl, ycyl); this is depicted in Figure 2, with the associated 

kinematics in (1a).  As all z axes were aligned, the problem was reduced to 2 dimensions, with the z 

transformation from c0 to c1 identified through measurement. 

 

Four 2D linear translation parameters were required for the kinematic equation (1a); from c0 to c1 (x1, 

y1), and the cylinder location (xcyl, ycyl) within c2, This provided an estimate of the cylinder position (xest, 

yest) in the robot base coordinate frame for a given rotation θ. For parameter identification, the nozzle 

was positioned on the cylinders circumference at n different rotations, providing three measured 
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coordinates (xn, meas, yn, meas, θn, meas). An optimisation routine minimised the cost function of (1b) through 

variation of the linear translation parameters in (1a), comparing the difference between estimated and 

measured coordinates for each rotation angle θn, meas. 

 

 
Figure 2: Transformation from robot base frame to the rotated coordinate system on the positioner.  
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3.2 Generation of cylindrical toolpath  

 

A planar 2D toolpath was generated, consisting of points (xi, path, yi, path), to be “wrapped” around the 

cylinder surface. xpath was mapped to the cylinder rotation angle θ based on the arc length around the 

circumference, as shown in (2a), and ypath was mapped directly to the nozzle z height, as shown in (2b).  

 

The cylinder offset from the centre of rotation caused a displacement in the xy plane of c1 upon rotation; 

(2c) provided the required offset for the nozzle in the coordinate frame c1 to track the cylinder surface. 

The full coordinates required for the robot to print on the cylindrical surface were the rotation of the 

cylinder on the positioner θi, the nozzle position (xi, yi, zi) in c1, and the nozzle orientation, held constant 

at normal to the cylinder surface, depicted in Figure 3. 

 

 
𝜃𝑖 =  

𝑥 𝑖,   𝑝𝑎𝑡ℎ

𝑟𝑐𝑦𝑙
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To demonstrate this process, the 2D toolpath was extracted from the Scalable Vector Graphics (SVG) 

file of the University of Bristol logo, and a corresponding print path calculated. The result from a 

visualisation of the toolpath and the actual path is shown in Figure 3. 
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Figure 3: Visualisation (left) and realisation (right) of a 2D print path generated from an SVG file 

mapped onto a cylinder. 

 

 

4.  Curved core generation 

 

4.1. Printing onto curved surface 

 

To generate the toolpath for a curved surface, an STL input file was used to describe the substrate 

surface; this is a standard CAD export format typically used within FDM slicing programs, which 

describes a 3D model as a series of tessellated triangles, with each facet containing three coordinates 

and a surface normal away from its surface. An additional benefit was the ability to directly manufacture 

with a traditional FDM printer prior to testing. 

 

The STL file was imported using the Python STL library, and rotated, translated and trimmed to contain 

facets from the top surface. A projection of the 2D toolpath provided the required z coordinate for each 

point, and the surface normal for each point was obtained from the surface normal of the enclosing facet. 

For deposition of successive layers, the point was offset in the direction of this normal, described below, 

or in the z direction, demonstrated in Section 4.2. Collisions with the prebuilt surface during travel 

moves were avoided by execution of a circular path between two print lines. An example deposition 

using this process is shown in Figure 4, where the logo print path used in Section 3 was deposited directly 

onto a hemispherical shape. 

 

 

 

Figure 4: Visualisation (left) and realisation (right) for deposition of a honeycomb structure onto a 

hemispherical surface with the print direction following the surface normal. 
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The quaternion required to maintain the correct nozzle orientation, qnozzle, relative to the work object 

coordinate system c1, was generated based on the surface normal, n = (nx, ny, nz) and its angle to the x 

and y axis vectors, x = (1, 0, 0) and y = (0, 1, 0) respectively. The calculation is shown in (3). An addition 

of π to the angle to the x axis provides the 180° rotation to orient the z axis of the TCP to the opposing 

direction to nz. 

 

 
𝑞𝑥 = [cos (

𝜃𝑥

2
) , 0, sin (

𝜃𝑥

2
) , 0]   where   𝜃𝑥 =  sin−1

(𝑛𝑥 , 0, 𝑛𝑧) .  𝒙

‖(𝑛𝑥, 0, 𝑛𝑧)‖
 +  𝜋 

 

(3a) 

 
𝑞𝑦 = [cos (

𝜃𝑦

2
) , sin (

𝜃𝑦

2
) , 0 , 0]   where   𝜃𝑦 =  sin−1

(0, 𝑛𝑦, 𝑛𝑧) .  𝒚

‖(0, 𝑛𝑦, 𝑛𝑧)‖
  

 

(3b) 

 𝑞𝑛𝑜𝑧𝑧𝑙𝑒 =  𝑞𝑥 ×  𝑞𝑦  (3c) 

 

 

4.2. Manufacture of curved layer component 

 

Two aerofoil cores were manufactured to demonstrate applicability to the aerospace industry; a straight, 

untwisted aerofoil and a tapered aerofoil including twist. The bottom surface of each specimen was 

again described by an STL file, and a 2D hexagonal toolpath generated to cover the aerofoil surface, 

with the conforming layer generated as in Section 4.1. Successive layers of deposition were generated 

through application of an offset along the z axis, with points higher than the centre line removed; the 

resulting half was then reflected to produce the upper half, curved in the opposing direction; this is 

shown by the top and bottom toolpaths generated as shown in Figure 5, depicting the straight and 

untampered aerofoil. 

 

 
 

Figure 5: Visualisation (left) of the top and bottom layers path travel, and realisation (right) of an 

untapered aerofoil shape. The lighter coloured lines depict circular travel movements to avoid collision 

with the existing structure. 

Further expansion allowed for a variable z height along the path layer, calculated from the vertical 

intersection with a second STL file denoting the top surface. This allowed the manufacture of a curved 

and tapered aerofoil shape, showing the high levels of complexity achievable with a robotic arm. This 

is depicted in Figure 6, where a twisted and curved aerofoil was printed; two STL files were created to 

define the shape with the first defining the centre plane, and the second using a “loft” feature to create 

the aerofoil shape along this plane. 
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Figure 6: Visualisation (left) and realisation (right) of a complex aerofoil shape manufactured with 

curved layer FDM. 

 

 

5. Conclusions 

 

The use of robotic arm-based Fused Deposition Modelling (FDM) provided the low-cost and high 

complexity achievable through conventionally manufactured FDM components with the added 

capability of the in-situ manufacture of curved layers, requiring a greater degree of complexity for 

toolpath generation. This work has introduced methods to map a SVG graphics file to robot coordinates 

for printing directly onto a cylindrical surface located in the robots workspace, and to map a 2D toolpath 

onto a curved surface defined by an STL file. Finally, aerofoil-shaped cores were produced 

demonstrating the capability to produce print exterior layers anticipated to possess improved mechanical 

properties.  

 

The increased ease of toolpath generation for robotic arms described in this work will aid adoption of 

complex FDM within the aerospace industry. The controller has additional uses due to its flexibility for 

toolpath generation which remain to be explored, such as for tow-steering in AFP, and the ability to 

process complex sensor data on the PC and modify toolpaths to enable cobotic layup and manufacture. 

 

Further work will investigate the use of a 3D scanner to aid the initial localisation procedure and to 

generate the initial STL file for substrate printing. Additional work will involve the assessment of 

different methods of transitioning between layer curvatures taking inspiration from ply-drop literature.  
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