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Abstract 
Grid structures are widely used in many engineering fields. Typically, a single grid plate is employed as 
an orthotropic layer to strengthen plates and shells or as an independent structural element. In contrast 
with conventional grids, laminated grid plates are constituted from several grid layers with various 
orientations. Therefore, the grid layers with different orientations can be utilized to enhance stiffness 
and coupling effects of a weight sensitive structure. In the present study, to investigate the efficiency of 
the laminated anglegrids, the deformation and buckling responses of a conventional and several 
laminated anglegrid plates are evaluated. The first-order shear deformation plate theory along with Ritz 
method is employed to achieve the buckling load and maximum deflection of the plates. The 
effectiveness of modifying the tip angle of anglegrid layers on mechanical behaviors of the conventional 
and laminated grids is also studied. The analytical results of buckling load are compared and validated 
by finite element method. The results indicate that thoughtful selection of stacking sequences of the 
laminated grids and appropriate tip angle considerably improves the behavior of the laminated grids in 
comparison with conventional grids.  
 
 
1. Introduction 
 
The grid structures are designed to tolerate loads in specific directions. This preference can decrease the 
weight of structures[1]. Due to exceptional properties of the reinforced composite materials, low weight, 
directional and tailorable properties, they are widely used in weight sensitive structures such as grids. 
There are many known grid patterns in industries, namely, isogrid, orthogrid, and anglegrid and they 
can be utilized in different applications. Thus far, most investigations are concentrated on mechanical 
behavior prediction, fabrication, and optimization of single layer grid structures, which will be called 
conventional grids. Gürdal and Gendron [2] evaluated the structural efficiency of geodesically stiffened 
shells with various stiffener arrangements under compression, torsion and combined loads. Jaunky et al. 
[3] proposed an improved smeared stiffener theory for stiffened panels including skinstiffener 
interaction effects. They showed; the result of the new method is more accurate than common smeared 
stiffener approach. Bedair [4] studied the effects of stiffener position on the stability of stiffened plates 
subjected to compression and in-plane bending. He presented a strategy to optimize the location of the 
stiffeners. Prusty [5] applied the FEM to analyze free vibration and buckling of laminated stiffened 
panels using arbitrarily oriented stiffener formulation. Shi et al. [6] investigated the global and local 
buckling of grid stiffened carbon fiber thin shell structures subjected to external pressure. They used the 
hybrid genetic algorithm method to specify the optimal design of the structures to reach maximum 
buckling load. Ren et al. [7] compared the buckling response of advanced grid stiffened structures using 
equivalent stiffness, finite element, and hybrid models. 
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 Ehsani and Rezaeepazhand [8] presented a new class of grid structures which are known as “laminated 
grid structures”. They investigated lamination effects on stiffness and mechanical behavior of grid 
structures. Ehsani et al. [9, 10] studied the influence of the stacking sequence and pattern composition 
on buckling load of laminated composite grid plates and also conducted studies on the buckling load 
and natural vibration of laminated orthogrid plates. Their results showed that, there are proper stacking 
sequences, which considerably improves the mechanical behaviors of the grid structures. 
Similar to laminated structures, in a laminated grid, each single grid layer is assumed as a lamina. Hence, 
a laminated grid is composed of various single grid layers (conventional grids) with different stacking 
sequences (orientations). Fig.1 illustrates two types of anglegrid structures. Fig.1a shows a laminated 
anglegrid plate which is composed of three anglegrid layers, with (0°/90°/0°) stacking sequence. Fig.1b 
illustrates a conventional anglegrid plate. 
Several advantages can be named for employing laminated grid structures instead of the conventional 
grids such as ability to use different fibers, orientations, thicknesses, and patterns (isogrid, anglegrid, 
etc.) in each grid layer and accessibility to wide range of coupling effects of laminated grid structures. 
 

   

 

(1a) (1b) 
 

Figure 1. A laminated anglegrid plate, with three anglegrid layers and (0º/90º/0º) lay-up (1a), a 
conventional anglegrid plate with tip angle α  (1b) 

 
Although, the conventional composite grid structures have been extensively studied, there are limited 
attention to the laminated anglegrid structures and their tip angle effect on the structural performances. 
In the present study, the axial buckling load and maximum lateral deformation of laminated and 
conventional anglegrid plates are obtained employing Mindlin theory. The effectiveness of using 
different tip angles along with various orientation of each grid layer is also evaluated. To ensure the 
accuracy of results, some selected results are compared and validated with finite element results 
achieved using ABAQUS software. 
 
2. Problem Description 
 
2.1. Laminated Grid Configuration 
 
A laminated grid consists of several grid layers which the pattern, thickness and orientation 
of each layer can be varied [10]. In the current work, the laminated grids are composed of several 
composite anglegrid layers. Three cases of grid structures have been considered in this study. In all cases 
ribs’ width, bψ, is identical (see Fig.1) and the thickness of the structures are defined to have identical 
weight in all cases. Ribs’ spacing distance, dψ, is changed based on the tip angle of a grid layer. The 
plates have square geometry with side a, and symmetrical arrangement respect to mid-plane. The 
structures are considered to have simply support boundary condition along all edges. 
 The first case is a single layer anglegrid or conventional anglegrid. The second case is a sub-laminate 
grid structure with (±θº)s configuration and four layers. To investigate the effect of increasing the layers, 
the third one is considered to be a sub-laminate grid structure with (±θº)5s configuration and twenty 
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layers (see Table 1). It is assumed that the grid layers are without any initial imperfection or defect and 
are perfectly bonded to each other. Table 1 presents the characteristics of the defined cases. 
In a laminated grid, each grid layer may have any arbitrary orientation (θ). Fig. 4 illustrates a special 
anglegrid and a general anglegrid plate, which is rotated θ degree with respect to X direction. 
 
 

 
 

Figure 2. A specially anglegrid (θ=0) (left). A general anglegrid that is rotated θ degree with respect 
to x direction (right). 

 
The grid layers are made of carbon/epoxy material with the following elastic and strength properties: 
E1=48 GPa, E2=15.3 GPa, G12=5.1 GPa, ν12=0.315, and density=2112 kg/m [11] where E1, E2, and 
G12 are the longitudinal, transvers elastic and shear modules of the applied material, respectively. 
 

Table 1. The characteristics of the considered cases 
 

Case # Type of grid structure Lay-up name Stacking sequence Number of layers (N) 

1 Laminated anglegrid Sub-laminate (±θº)5s 20 

2 Laminated anglegrid Sub-laminate (±θº)s 4 

3 Conventional anglegrid Anglegrid (θº) 1 

 
 
2.2. Constitutive Equations 
 
The first-order shear deformation plate theory (FSDT) along with Ritz method is considered to obtain 
the buckling load and maximum deflection of the plates. Based on FSDT, the displacement field for a 
plate can be expressed as: 

u=u0(x, y, t)+zφx(x, y, t) (1a) 
v=v0(x, y, t)+zφy(x, y, t) (1b) 

w=w(x, y, t) (1c) 
Where u, v and w are the displacement components in x, y and z directions and φx and φy are the bending 
slope along y and x axis, respectively. 
 
The grid layer has directional properties. Therefore, the stress displacement relations for a special 
anglegrid Mindlin plate can be written as [12]: 
 

⎩
⎪
⎨

⎪
⎧

σxx
σyy
σxy
σyz
σxz⎭
⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡𝑄𝑄
�11 𝑄𝑄�12 𝑄𝑄�16 0 0
𝑄𝑄�12 𝑄𝑄�22 𝑄𝑄�26 0 0
𝑄𝑄�16 𝑄𝑄�26 𝑄𝑄�66 0 0
0 0 0 𝑄𝑄�44 𝑄𝑄�45
0 0 0 𝑄𝑄�45 𝑄𝑄�55⎦

⎥
⎥
⎥
⎥
⎤

⎝

⎜⎜
⎛

⎩
⎪
⎨

⎪
⎧

u0,x
v0,y

u0,y+v0,x
φy+w,y

φx+w,x ⎭
⎪
⎬

⎪
⎫

+z

⎩
⎪
⎨

⎪
⎧

φx,x
φy,y

φx,y+φy,x
0
0 ⎭

⎪
⎬

⎪
⎫

⎠

⎟⎟
⎞

 (2) 



ECCM18 - 18th European Conference on Composite Materials 
Athens, Greece, 24-28th June 2018 4 

A. Ehsani and H. Dalir 
 

[𝑄𝑄�] is the transferred reduced stiffness matrix and can be obtained as below: 
 

 [ ] [ ] [ ][ ]1 TQ T Q T− −
=  (3) 

 
[T] is the transformation matrix [13] which depends on the grid layer orientation, θ. For an anglegrid 
layer, [𝑄𝑄] is calculated according to the method presented by Nemeth [14]. Hence, the reduced stiffness 
elements for the specially anglegrid plate can be given as the following forms: 
 

(4) 
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Where ψ, bψ, and dψ are the geometry parameters, which are illustrated in Fig.1. E, GXY, GYZ, and GXZ 
are the longitudinal elastic and shear modules of applied composite material and it is assumed that the 
material properties of ribs are identical. The force and moment resultants N, M, and Q are defined as: 
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Substituting Eq. (2) into Eq. (5), the resultant forces and moments for a symmetric laminated grid are 
achieved. 
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Where ε and 𝜅𝜅 are the strains and curvatures of the mid-plane, respectively, Ks is the shear correction 
factor and [A] and [D] are the extensional and bending stiffness matrices of the laminated grid [13]: 
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Where, k is the layer number in the laminate, zk is distance of k layer from the middle surface, and N is 
the number of the grid layers.  
 
For a simply supported plate, the functions that satisfy the geometrical boundary conditions for w, φx 
and φy in Eq. 1 can be presented as the following series [15]: 
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Where the Wmn, Bmn and Cmn are the constants.  
The Ritz method has been employed to achieve the buckling load and natural frequencies of the plates. 
Accordingly, the total potential energy of the plate is calculated and can be expressed as: 
 

 U Vπ −=  (9) 
 
Where U and V are the strain energy and loss in the potential energy, respectively. For the laminated 
Mindlin plate, U and V are given by Reddy [16] and Dawe [17] respectively. Implementing a 
minimization procedure of the total potential energy with respect to Wmn, Bmn, and Cmn constants in 
absence of the lateral force, the following eigenvalue equation is achieved: 
 

  
(𝐾𝐾 − 𝜆𝜆𝐾𝐾𝐺𝐺)d�=0 

(10) 

 
Where K is the elastic stiffness matrix, KG is the geometric stiffness matrix and d� is the coefficient 
vector, which has the following form: 
 

d�= �
Wmn
Bmn
Cmn

� (11) 

 
Obtaining the variable λ from Eq. 11, the buckling load will be calculated. Minimizing total energy from 
Eq. 9 with respect to the unknown Wmn, Bmn, and Cmn constants in absence of buckling loads, several 
linear and simultaneous equations will be produced. Applying the mid-plane coordinate of the plate, the 
w, φx and φy will be achieved. 
 
 
3. Results and Discussion 
 
3.1. Lateral Deformation 
 
Figs. 3 to 5, show maximum deformation for the presented cases subjected to an equal arbitrary load. 
To evaluate the effects of layer orientation, θ, this parameter has been varied from 0 to 90 degrees. 
Moreover, to study the effect of tip angle, α, on the maximum lateral deformation of the plate, the tip 
angle is considered to change from 10 to 90 degrees and each corresponding graph is presented in the 
figures. 
 
As can be seen in the figures, the tip angle can considerably affect the deflection of the plate. According 
to Figs. 3 and 4, the plate with right tip angle, α=90º, has the maximum lateral deformation among others 
at θ=45º and minimum deformation at θ=0º. Therefore, as the θ=0º means the plate is a conventional 
anglegrid plate, using laminated grid will not be a suitable choice if the tip angle be equal to 90. It should 
be noticed if this type not applied in proper direction, the maximum deformation of the plate is 
dramatically increased. However, for anglegrid plates, which they tip angle is lower than 90º, using 
laminated grid significantly decreases the maximum deformation of the plates and utilizing laminated 



ECCM18 - 18th European Conference on Composite Materials 
Athens, Greece, 24-28th June 2018 6 

A. Ehsani and H. Dalir 
 

grid for these cases will be a rational choice. As can be seen in Figs. 3 and 4, increasing the number of 
layers the maximum deformation of the plates is considerably decreased. 
 
As the Fig. 5 illustrates, the plate with right tip angle has the minimum mid-plane deformation among 
other types of anglegrids. Consequently, employing a right angle grid will be appropriate case among 
the others. As can be seen in this figure, the shape of graphs is changed when the tip angle of the structure 
decreases. 
 
 To evaluate the results, using Abaqus software the anglegrid plate with α=10º are modeled in several 
orientation angles, θ, and their maximum deformation are presented for corresponding analytical results 
in Fig. 5. As can be seen, analytical and finite element results are in good agreement with each other. 
 

  
Figure 3. Maximum deformation of sub-

laminate anglegrid plate (3rd case) for different 
layers orientation and various tip angles 

Figure 4. Maximum deformation of sub-
laminate anglegrid plate (2nd case) for different 

layers orientation and various tip angles 

 
Figure 5. Maximum deformation of conventional anglegrid plate (1st case) for different orientation 

and various tip angles 
 
3.2. Buckling Load 
 
Figs. 6 to 8 depict critical axial buckling load for the presented cases in Table 1. As can be seen, in all 
cases the plates with right tip angle, α=90º, has the maximum critical buckling load at θ=0º. In the other 
types, the plate behavior is completely related to the tip angle of the layers. For instance, in the case 
α=10º the maximum buckling load is happened at θ=45º. Considering the following figures, it can be 
seen, increasing the number of layers has the significant effect on critical buckling load of the plates. 
For example, the buckling load of sub-laminate grid plate with (±45)5s configuration is about 28% more 
than conventional anglegrid plate at same orientation. However, the critical buckling loads for each plate 
will converge to an ultimate value and will not considerably affected by increasing the number of layers. 
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 Similar to the previous session, to ensure about the analytical results, the anglegrid plate with α=10º 
are modeled in several orientation angles and their critical buckling load are obtained. According to Fig. 
8, analytical and finite element results are in good agreement with each other. 
 

  
Figure 6. Maximum critical buckling load of 

sub-laminate anglegrid plate (±θº)5s for different 
layers orientation and various tip angles 

Figure 7. Maximum critical buckling load of 
sub-laminate anglegrid plate (±θº)s for different 

layers orientation and various tip angles 

 
Figure 8. Maximum critical buckling load of conventional anglegrid plate (1st case) for different 

orientation and various tip angles 
 
 
3. Conclusions 
 
In this study, the critical buckling load and maximum lateral deformation of laminated and conventional 
anglegrids with identical weight are compared. To investigate the influence of number of grid layers on 
mechanical behaviors of a laminated grid structure, various laminated grids with different number of 
layers are considered. The effectiveness of modifying the tip angle of anglegrid layers on mechanical 
behaviors of the conventional and laminated grids is also studied. The results indicate that thoughtful 
selection of stacking sequences of the laminated grids and appropriate tip angle considerably improves 
the behavior of the laminated and conventional anglegrid structures. 
The results show the grid orientation is the effective parameter in mechanical responses of the grid 
structures. In addition, the mechanical responses are proportional to number of grid layers of laminated 
grids.  
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