


# A Guide to Data Analytic Techniques and their Use in Fighting Fraud and Improper Payments

**Richard Sangster** 



#### Advantages of using data





# Background

Fraud is a massive problem, especially for the public sector.

- Our functions and structures make us attractive targets.
- We don't have the freedom a private enterprise does to act.
- Legacy systems are not helpful.



# Extraordinary spending



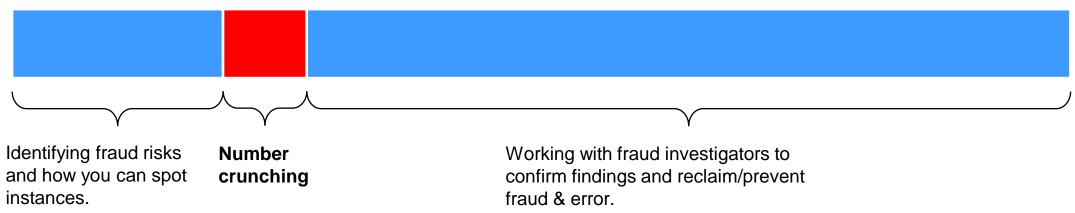
**Diverse functions** 



Huge customer base



**Limited Actions** 




#### Your fraud problem

What is the aim here:

- Measuring likelihood of fraud & error?
- Getting more information on your applicants?
- Identifying, reclaiming, and preventing fraud and error?

#### A project:





### **Entity Resolution**

Also called data matching, this is the use of algorithms to compare records within or across datasets in order to identify when multiple records refer to the same entity.



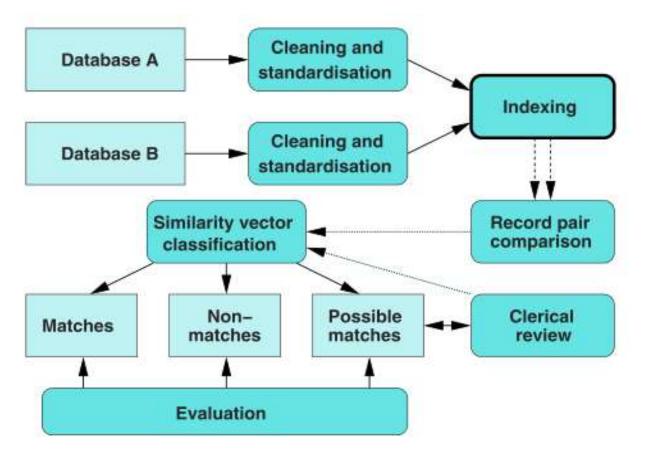


#### Entity resolution – example process

#### **Raw Data**

| RecID | Surname  | GivenName | Street             | Suburb      | Postcode | State  | DateOfBirth |  |
|-------|----------|-----------|--------------------|-------------|----------|--------|-------------|--|
| al    | Smith    | John      | 42 Miller St       | O'Connor    | 2602     | A.C.T. | 12-11-1970  |  |
| a2    | Neighan  | Joanne    | Brown Pl           | Dickson     | 2604     | ACT    | 8 Jan 1968  |  |
| a3    | Meyer    | Marie     | 3/12-14 Hope Cnr   | SYDNEY      | 2050     | NSW    | 01-01-1921  |  |
| a4    | Smithers | Lyn       | Browne St          | DIXON       | 2012     | N.S.W. | 13/07/1970  |  |
| a5    | Nguyen   | Ling      | 1 Milli Rd         | Nrth Sydeny | 2022     | NSW    | 10/08/1968  |  |
| аб 👘  | Faulkner | Christine | 13 John St         | Glebe       | 2037     | NSW    | 02/23/1981  |  |
| a7    | Sandy    | Robert    | RMB 55/326 West St | Stuart Park | 2713     | NSW    | 7/10/1970   |  |

#### **Cleaned and Standardised Data**


| RecID | GivenName | Surname  | Gender | StrPrefix | StrNum | StrName | Str/Type | Suburb       | Postcode | State | BDay | BMonth | B Year |
|-------|-----------|----------|--------|-----------|--------|---------|----------|--------------|----------|-------|------|--------|--------|
| al    | john      | smith    | m      |           | 42     | miller  | street   | oconnor      | 2602     | act   | 12   | 11     | 1970   |
| a2    | joanne    | neighan  | f      |           |        | brown   | place    | dickson      | 2604     | act   | 8    | 1      | 1968   |
| a3    | mary      | meier    | f.     | 3         | 12-14  | hope    | corner   | sydney       | 2050     | nsw.  | 1    | 1      | 1921   |
| a4    | lynette   | smithers | f      |           |        | browne  | street   | dixon        | 2012     | nsw   | 13   | 7      | 1970   |
| a5    | ling      | nguyen   | 2      |           | 1      | milli   | road     | north sydney | 2022     | nsw   | 10   | 8      | 1968   |
| a6    | christine | faulkner | f.     |           | 13     | john    | street   | glebe        | 2037     | nsw   | 23   | 2      | 1981   |
| a7    | robert    | sandy    | m      | rmb 55    | 326    | west    | street   | stuart park  | 2713     | nsw   | 7    | 10     | 1970   |

Real world data is messy and very rarely has unique identifiers you can rely on.

- 1. Cleaning and standardisation; make sure al the data is recorded in the same way.
- 2. Indexing; algorithms that filter the comparisons being made.
- 3. Record pair comparison; detailed examination of records indexing highlighted.
- 4. Similarity vector classification: final estimation of likelihood two records belong to one entity.

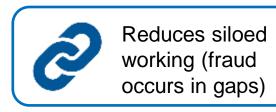


#### Entity resolution – example process



Real world data is messy and very rarely has unique identifiers you can rely on.

- 1. Cleaning and standardisation; make sure al the data is recorded in the same way.
- 2. Indexing; algorithms that filter the comparisons being made.
- 3. Record pair comparison; detailed examination of records indexing highlighted.
- 4. Similarity vector classification: final estimation of likelihood two records belong to one entity.



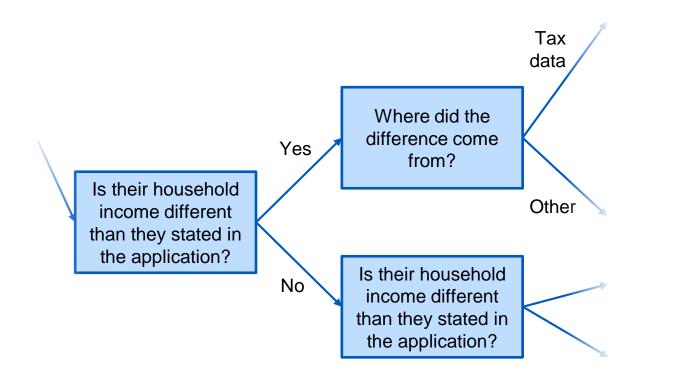

# Entity resolution

You need to understand it well, because if you are the one with the fraud risk chances are you will not be the one doing it.

- Organise and clean our own data.
- Bring insights from other datasets into our analysis.
- Indexing algorithms have different strengths and limitations, that you need to consider against your data.
- Doesn't (by itself) let us do anything with these insights at scale.








Connect to other data sets for broader insight

-- OFFICIAL --

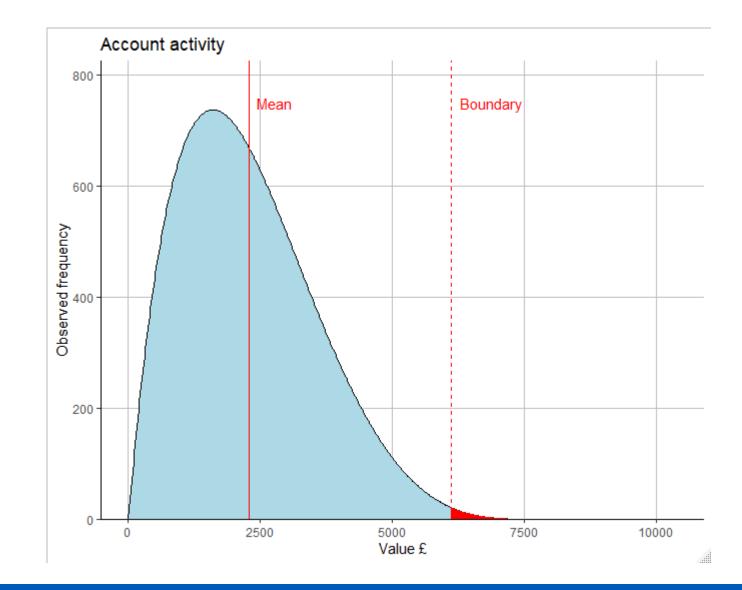


#### Rules based analysis – Expert systems



Take the knowledge and experience of your fraud experts, and build an evaluation tool based on their insights.

- Fairly approachable.
- Makes existing case evaluation more scalable.
- Needs that expert knowledge.
- 'Hard' rules can quickly become outdated.

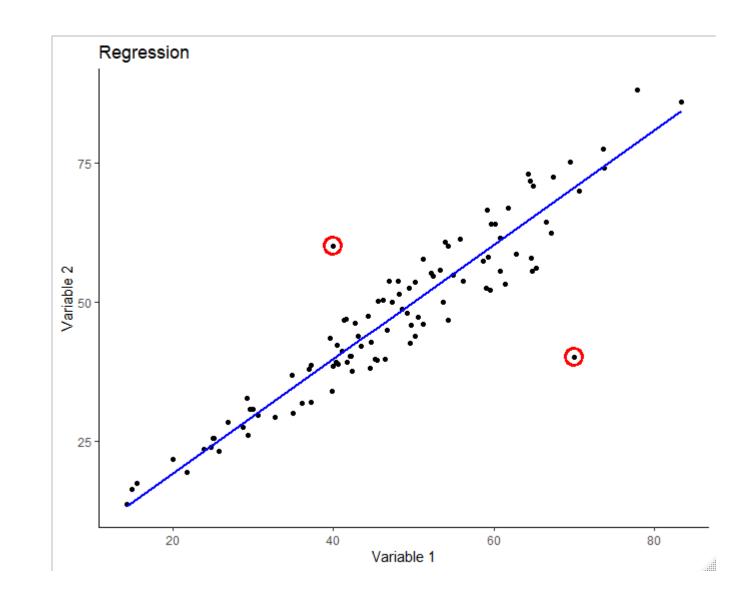



#### Stochastic evaluation

Using statistics to evaluate the data and set dynamic rules.

- Evaluate the data to identify outliers more easily.
- Able to fine tune the boundary.
- It reacts to changing behaviour.

In the example, how do we select the accounts for fraud investigators to review?





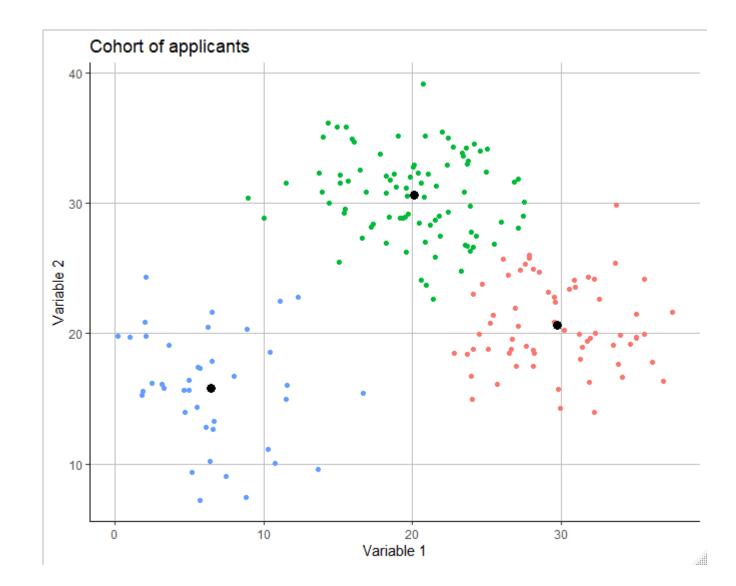

# Regression

A process to estimate the relationship between variables. Used a lot for forecasting.

- Explore relationships between variables.
- Identify outliers for review.
- You have to consider the types of regression that are appropriate for your data.
- Regression alone doesn't prove relationships.






#### Clustering

Grouping similar entities together by identifying areas of high density in a data space.

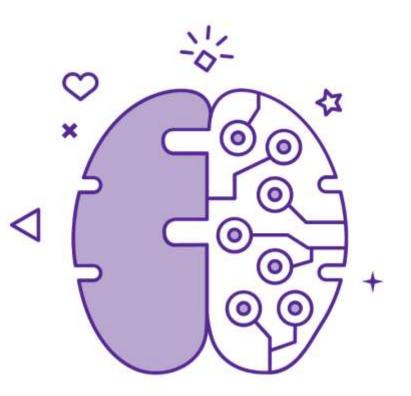
- Identify anomalous points.
- Useful for predictive modelling.
- Can be done using a lot of variables.

But how to validate this?

- Using test data.
- Manually reviewing the results.






The blue yonder...

#### **Machine learning**

At its most basic, this takes a statistical model and designs it to optimise itself. Usually needs training data where you already know which cases are fraud/error, but can be used for data exploration as well.

#### **Deep learning**

Sophisticated decision making tools. Very powerful and adaptable, but difficult to build and potentially controversial to use for counter fraud & error in the public sector.





# Thank you

Richard Sangster richard.sangster@officeforlifesciences.gov.uk