

Key Note Address, EERA DeepWind 2022

Sustainability in Wind Energy

Lena Kitzing, DTU Wind Energy

How sustainable is Wind Energy?

"Best in class"

How sustainable can it be?

Source: https://www.stockholmresilience.org/research/researchnews/2016-06-14-how-food-connects-all-the-sdgs.html

DTU TOTAL ENVIRONMENTAL IMPACT (weighted scoring)

UNECE, 2021**, <u>link</u> Bonou et al., 2016, <u>link</u>**

* large uncertainty due to big ranges estimated by experts – here only the global average estimated by UNECE is shown for simplicity – actual impact may be higher

DTU Wind Energy

TOTAL ENVIRONMENTAL IMPACT

Sound; visual impacts Neighbour perceptions; inclusions

Birds and bats collisions

LAND USE (over whole supply chain) Ranges for different technologies and countries

* large uncertainty due to big ranges estimated by experts – here only the global average estimated by UNECE is shown for simplicity – actual impact may be higher

UNECE, 2021, <u>link</u>

LIFECYCLE GHG EMISSIONS, gCO₂ eq. per kWh

arge uncertainty due to big ranges estimated by experts – here only the global average estimated by UNECE is shown
lower range includes estimates for possibilities with carbon capture and storage (not largely implemented technology)

Market	Plant name	Turbine (MW-rotor diameter)	Climate Change g CO ₂ -eq/kWh	EPBT (months)	UNECE, 2021 , <u>link</u>
onshore	G2	2.3-108	6.0	6.2	Papaul at al. 2016 link
	D3	3.2-113	5.0	5.2	D01100 et al., 2010, <u>IIIK</u>
offshore	G4	4.0-130	10.9	11.1	
	D6	6.0-154	7.8	10	7

	Wind	Enoral
טוע	VVIII U	Elleruv

GCO₂/kWh

OFFSHORE WIND CURRENT LIFECYCLE EMISSIONS

ELIGIBILITY CRITERION FOR EU TAXONOMY

DTU Wind Energy

88 %

SHARE OF RECYCLABILITY OF A MODERN WIND TURBINE *

Blades – the Achilles heel of wind energy sustainability?

Sustainability of Wind Energy "Best in class" ...and more can be done

Recyclability

Increase durability, reparability, reusability, repurposing options Reduce use of resources

Reduce use of hazardous substances

>> minimise impacts

...but also: maximise benefits (environmental & social) in project development and technology innovation

APPENDIX

DTU Wind Energy

Contribution (%) of 'Materials' to life cycle impacts and relative contribution of components

	_			
Market	et Plant Turbi		Climate Change	EPBT
	name	(MW-rotor	g CO2-eq/kWh	(months)
		diameter)		
onshore	G2	2.3-108	6.0	6.2
	D3	3.2-113	5.0	5.2
offshore	G4	4.0-130	10.9	11.1
	D6	6.0-154	7.8	10

Bonou et al., 2016, <u>link</u>

