TESTING HYDROGEN STORAGE AND GEO-METHANATION IN DEPLETED HYDROCARBON RESERVOIRS Cathrine Hellerschmied^{1,2}, Johanna Schritter², Niels Waldmann², <u>Artur B. Zaduryan</u>², Lydia Rachbauer³, Markus Pichler⁴, Stephan Bauer⁴, Anitha Andiappan⁴ & Andreas P. Loibner² - ¹ University of Vienna, Division of Microbial Ecology, Center for Microbiology and Ecosystem Science, Vienna, AT - ² University of Natural Resources and Life Sciences, Institute of Environmental Biotechnology, Department of Agrobiotechnology IFA-Tulln, AT - ³ Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, USA ⁴ RAG Austria AG, AT Corresponding author's e-mail address: andreas.loibner@boku.ac.at **Keywords:** hydrogen storage, geo-methanation ## **ABSTRACT** Renewable energy is fundamental to the future of net-zero carbon emissions. At peak production, a surplus of renewable electricity will arise. Solutions for large-scale cross-seasonal storage of renewable electricity are currently lacking. Power-to-Gas, the process of converting electrical energy to chemical form, such as hydrogen gas (H₂), may be coupled with underground gas storage, allowing to retain otherwise lost renewable energy. In this presentation, the results of the first experimentally controlled study of underground H₂ storage are reported. The majority of H₂ was successfully recovered. We show that H₂ injection into the reservoir triggered the microbially-mediated conversion of H₂ to methane (CH₄), termed "geo-methanation". By recreating geo-methanation in reservoir-mimicking lab-scale mesocosms, we showed full, rapid and reproducible conversion of H₂ & CO₂ to CH₄ over a course of year-long experiment. Additionally, we discuss a challenge for geo-methanation related to substrate gas partial pressures in the mix and experimental solutions to it. Finally, we provide first results of testing industrial off-gas CO₂ as substrate for geo-methanation, paving the way to closed carbon cycle energy generation and utilization on site for industrial applications. ## Acknowledgements This study is based on research accomplished within the flagship projects Underground Sun Storage, Underground Sun Conversion, and Carbon Cycle Economy Demonstration funded by the Austrian Climate and Energy Fund and the Austrian Research Promotion Agency (FFG). ## References Hellerschmied, C., Schritter, J., Waldmann, N., Zaduryan, A.B., Rachbauer, L., Scherr, K.E., Andiappan, A., Bauer, S., Pichler, M. and Loibner, A.P. (2024). Hydrogen storage and geomethanation in a depleted underground hydrocarbon reservoir. *Nature Energy*, 9(3), pp.333–344. doi:https://doi.org/10.1038/s41560-024-01458-1.