Assessment of Approaches for the Mitigation of Confounding Effects in PRISMA and EnMAP Retrieval of Topsoil Properties

Saham Mirzaei (CNR IMAA, Italy)

S. Guillaso¹, L.Marrone², K.Misbah², S.Pignatti³, F.Rossi⁴, K.Segl¹, A.Tricomi⁵, S.Pascucci³, R. Casa²

¹GFZ (Germany), ²DAFNE, Università della Tuscia (Italy),³ CNR-IMAA (Italy), ⁴Università La Sapienza (Italy), ⁵ e-GEOS (Italy)

ESA Symposium on Earth Observation for Soil Protection and Restoration

Limitation of hyperspectral data for soil properties retrieval

Hyperspectral data for soil properties retrieval

External parameters effect minimizing

In-situ data gathering and image acquisition (Italy)

Elementary Sampling Unit

Installation of Soil Moisture Sensors

PRISMA Dataset (3 test sites: Jolanda, Maccarese, Pignola)

Totally 20 PRISMA images (2019-2023), n = 635

Variable	Min	Max	Mean	Std
Clay (%)	4.4	79.8	42.7	20.5
Silt (%)	1.1	64.7	26.1	15.8
Sand (%)	2.8	93.0	31.2	28.4
SOC (%)	0.2	6.4	1.8	1.6

EnMAP Dataset (1 test site: Jolanda)

Totally 5 EnMAP images (2022-2023), n = 103

Variable	Min	Max	Mean	Std
Clay (%)	23.2	73.8	54.2	15.3
Silt (%)	21.0	64.7	36.8	12.6
Sand (%)	2.8	22.0	9.0	5.3
SOC (%)	0.6	8.9	3.6	2.3

CHIME simulation

Minimizing the external parameters effect of reflectance

Multilayer rAdiative tRansfer Model of soll reflecTance (MARMIT)

External Parameter Orthogonalization (EPO)

A soil sample of Jolanda with clay loam texture

X = XP + XQ + R

- Useful component attributable to selected parameter(s), (i)
- A parasitic component attributable to non-selected parameter(s), (ii)
- (iii) Independent residual

Green vegetation

0.4

0.2

-0.4

Finding optimum preprocessing method and machine learning algorithms for PRISMA

Produce soil properties maps from PRISMA - CHIME image

Produce soil properties maps from PRISMA image

- **1. Sensor**: PRISMA
- 2. Site: Jolanda farm
- **3.** Acquisition: 2023/04/07

Finding optimum preprocessing method and machine learning algorithms for EnMAP

Produce soil properties maps from EnMAP – CHIME image

Produce soil properties maps from EnMAP image

- **1. Sensor**: EnMAP
- 2. Site: Jolanda farm
- **3.** Acquisition: 2023/04/04

Conclusions

- The combination of GPR with "MATERN" kernel, with the first order derivative of absorbance spectra smoothed by Savitzky–Golay (frame size = 7, 3th degree polynomial) seems the optimum combination both for PRISMA and EnMAP data.
- 2. The coupled Green Vegetation to Soil Moisture EPO leads to reduce the variation of estimated value between image acquisitions at different dates and also a slight improving in soil properties estimation.
- 3. MARMIT is an option to be further investigated to derive dry spectra.
- 4. CHIME simulated data have suitable capability for soil properties mapping, a simulator is expected. More precise simulation requires spectroscopy or airborne dataset.
- 5. EnMAP dataset will be completed by including more acquisitions in different sites to fill the gap of the sand data.