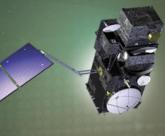
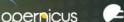


ESA UNCLASSIFIED – For ESA Official


PROGRAMME OF THE EUROPEAN UNION

co-funded with

7th Sentinel-3 Validation Team Meeting 2022


18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Calibration monitoring of SLSTR IR channels based on comparisons with IASI Tim Hewison, Vincent Debaecker, Alessandro Burini, Ali Mousivand, Igor Tomazic EUMETSAT

→ THE EUROPEAN SPACE AGENCY

LEO-LEO IR Inter-Calibration Algorithm

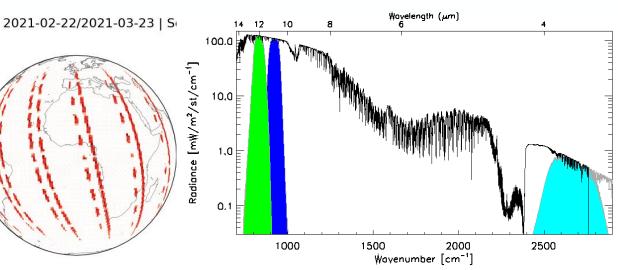
Direct Comparisons with Reference Instrument

- Tie to contemporary reference instrument
- with very small uncertainty
- Algorithm based on GSICS GEO-LEO IR

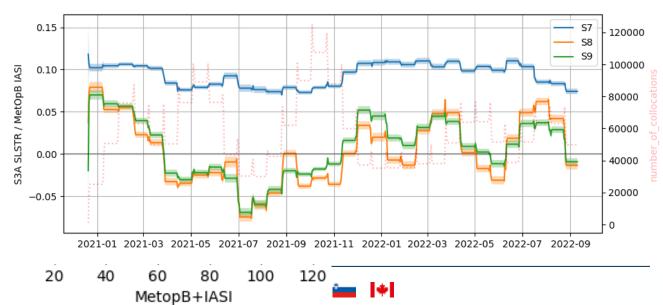
Collocate in Space, Time, Angle

- Extended Simultaneous Nadir Overpasses (SNOs)
- Match Viewing Zenith Angle within 1% path difference
- Match Observation Time within 200 s
- Average all SLSTR pixels within each IASI iFoV

Hyperspectral Reference (IASI)


- Gap-filling to extend IASI to cover full S7 band
- Convolve IASI spectrum with SLSTR Spectral Responses
- Could diagnose SRF errors

Compare


- Apply weighted regression to collocated radiances
- Evaluate uncertainties

Evaluate & Monitor Bias

Check long-term stability & Decontamination

Brightness Temperature Bias for Standard Scene (K)

Implementation in MICMICS

opernicus

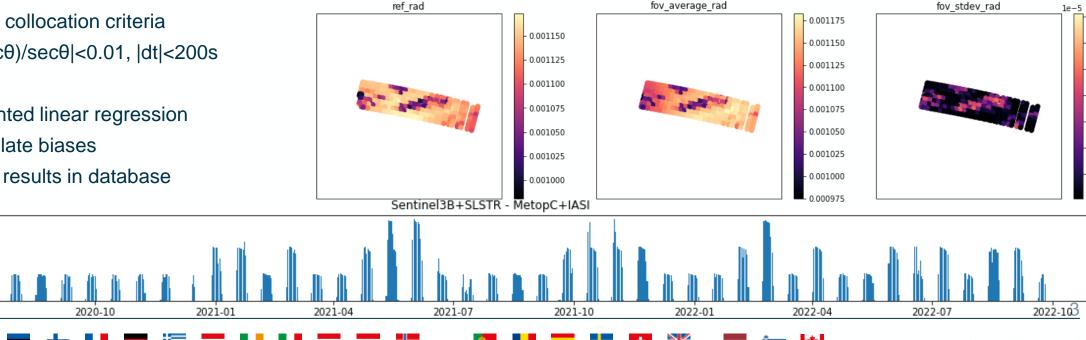
🗲 EUMETSAT

- Routine daily processing .
- **Pre-Collocation** .
 - Select granules with >10% overlap •
 - Time difference <1200s •
 - Average SLSTR pixels to IASI iFOV ٠
 - Spectral Convolution •
 - Generate collocation files •
- Filtering
 - Apply collocation criteria ۲
 - $|d(\sec\theta)/\sec\theta|<0.01, |dt|<200s$ •
- Analysis

Reporting

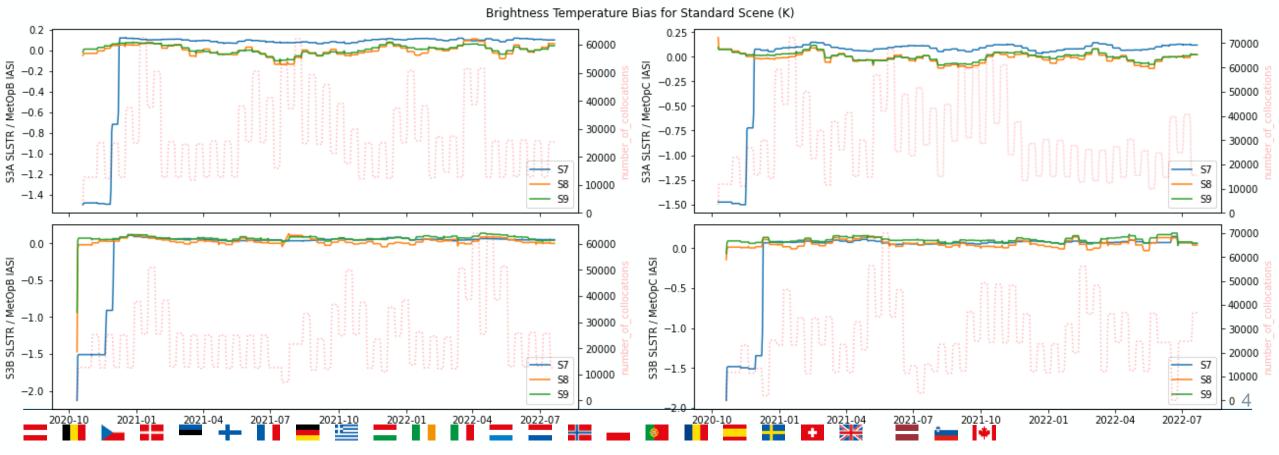
Parameter of broducts 1000 1000 0

- Weighted linear regression •
- Calculate biases ٠


2020-07

Store results in database •

MCMCS


Mission Integrated Calibration Monitoring & Inter-Calibration System

SATCAL+COLLOC+LEOLEOIR: Sentinel3A SLSTR / MetopB+IASI (2020-06-03 12:03:53)

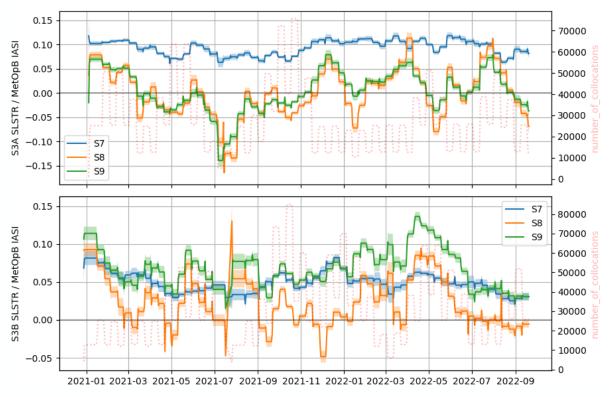
Results – Nadir Views

- Bias for Standard Scenes
 - small biases in all channels: S7 ~+0.1K, others ~0.0K
- Stable for all channels since new gap-filling correction 2020-11
 - For both SLSTR-A and –B with both IASI-B and –C (and –A)

PROGRAMME OF THE

EUROPEAN UNION

eesa


co-funded with

🞐 EUMETSAT

opernicus

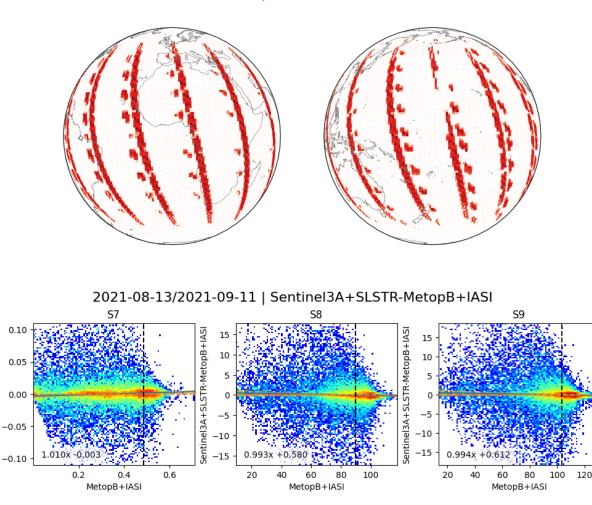
Results – Oblique Views

- Bias for Standard Scenes
 - small bias in S7 ~+0.1K, others ~0.0K
- Stable for all channels
 - For SLSTR-A (above) and –B (below)

2021-08-13/2021-09-11 | Sentinel3A+SLSTR-MetopB+IASI

opernicus

EUMETSAT

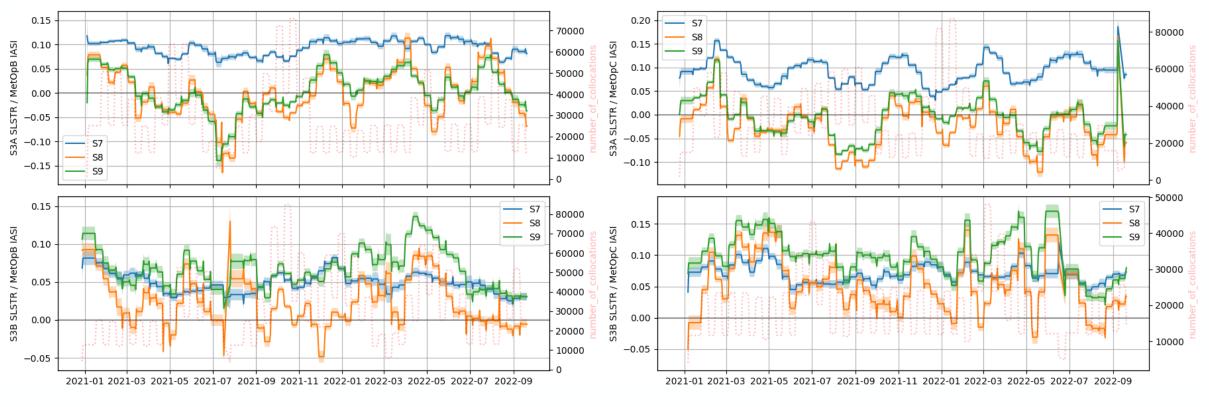

PROGRAMME OF THE

EUROPEAN UNION

SLSTR-MetopB+IASI

Nel3A

Sentin



· e e sa

co-funded with

Results – Oblique Views: IASI-A/B

- Bias for Standard Scenes
 - For SLSTR-A (above) and –B (below)
 - Based on inter-calibration with IASI-B (left) and IASI-C (right)
 - No correlation in time series variations → SLSTR calibration is stable

PROGRAMME OF THE EUROPEAN UNION

6

·eesa

co-funded with

🗲 EUMETSAT

opernicus

Bias at Standard Scenes 2021-2022

PROGRAMME OF THE EUROPEAN UNION

EUMETSAT

• Bias at Standard Scene

- Tb ~285K
- 2020-12-01 to 2022-10-15
- Small bias in S7 (S3A+B)
 - Gap-filling?
- Small bias in S3B S9
- Nadir and Oblique very similar

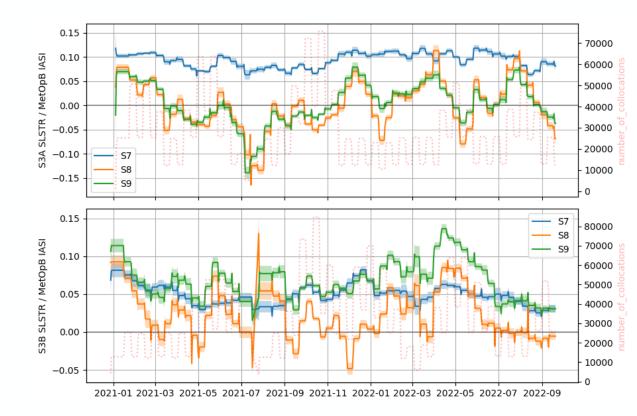
• Radiance-dependent Bias

- Small Biases 270-300K:
 - <0.1K in all channels
- Larger biases in cold scenes
- Hot land excluded
- Analysis ongoing
- Full uncertainty analysis needed

Sentinel-3 SLSTR/Ch	Std Bias [K] at Nadir wrt IASI-B+C	Std Bias [K] Oblique wrt IASI-B+C	Random Uncertainty (k=2) [K]	Gap-Filling RMSE [K]
S3A/S7	+0.09	+0.09	0.01	0.08
S3A/S8	-0.00	-0.01	0.02	0
S3A/S9	+0.01	+0.00	0.02	0
S3B/S7	+0.06	+0.06	0.01	0.08
S3B/S8	+0.05	+0.04	0.02	0
S3B/S9	+0.09	+0.08	0.02	0

opernicus

2022-01-01/2022-10-01 | Sentinel3A+SLSTR-MetopB+IASI


Conclusions

Extension of previous work by Igor Tomazic to include:

- Routine monitoring of SLSTR IR channel calibration at EUMETSAT
 - Since 2020-12-01
 - Based on inter-comparison with IASI-B and -C
 - For Sentinel-3A and -3B, S7, S8 + S9, Nadir + Oblique
 - Public access to reports from 2024
- Results so far
 - Confirmed good calibration for warm scenes (SST)
 - <0.1K Bias in all channels 270-300K
 - Possible biases for colder scenes
 - Stable over 2021-2022
- Algorithm Development

٠

- Ongoing tuning
- Issue over hot land surfaces
 - night-time results so far extend dynamic range
 - Potential application to Fire Channels

EUMETSAT

opernicus

PROGRAMME OF THE

EUROPEAN UNION

·eesa

co-funded with

Thank you!

Your Comments and Questions are welcome

9