

TRUTHS studies for Sensorto-Sensor Calibration

ESR3 – TRUTHS for Climate Workshop 27/06/2024 Maddie Stedman, Sam Hunt, Nigel Fox (NPL)

Calibration & Validation Techniques

Simulated References

NPLO

National Physical Laboratory

BAND SPECIFICATION ANALYSIS

ESR3 – TRUTHS for Climate Workshop 27/06/2024

TRUTHS Spectral Band Specification

Undertook analysis to evaluate requirements for HIS spectral band specification

Spectral Band Parameters investigated:

- Bandwidth (FWHM) and spectral sampling interval (SSI)
- ISRF knowledge:
 - Central wavelength knowledge
 - Bandwidth knowledge
 - Band shape knowledge (skew & kurtosis)

TRUTHS Spectral Band Specification Method

Simulated representative spectra for different scenes using RTM *LibRadtran:*

- Mixed forest
- Grassland
- Snow
- Desert
- Ocean

Evaluated impact of TRUTHS band specification parameters on intercalibration performance for representative target sensors (MSI, OLCI, VIIRS)

TRUTHS Spectral Band Specification **Results Bandwidth (FWHM) & Spectral Sampling Interval (SSI)**

MSI

• For non-absorption bands, bandwidth of 4 nm resulted in % difference of < 0.1 % for all scenes

Sentinel-2B msi: Bandwidth = SSI

OLCI

- Higher % differences than MSI due to narrower bands
- For non-absorption other bands, bandwidth of 4 nm resulted in % difference of < 0.5 %

TRUTHS Spectral Band Specification **Results**

Ratio of Bandwidth (FWHM) to Spectral Sampling Interval (SSI)

For bandwidth = 4 nm, absolute difference is < 0.1 mW $m^{-2}nm^{-1}sr^{-1}$ for all bands

SSI equal to bandwidth is sufficient for intercalibration performance

Graph of absolute difference of Sentinel-2B msi bands derived from TRUTHS (BW = SSI) and derived from TRUTHS (BW = 2*SSI)

Band Central Wavelength Knowledge

For desert scene, all bands (except B01, B09, B10) resulted in < 0.1 % difference for 0.1 nm shift

Graph of percentage difference in Sentinel-2B msi TOA radiance due to wavelength shift in TRUTHS (SSI = BW = 4, 6, 8 nm):

TRUTHS Spectral Band Specification ISRF Shape Knowledge In-flight Calibration of ISRF Band Shape

- Investigated methods for in-flight calibration of ISRF band shape
 - Using Fraunhofer lines and Onboard Rare-Earth oxide doped diffuser reflectance
- Undertook analysis to evaluate performance of methods

TRUTHS Spectral Band Specification **Conclusions**

- Analysis performed to contribute to formulation of HIS band specification requirements to achieve intercalibration performance requirements
- Considered requirements on band specification parameters:
 - Bandwidth (FWHM) & spectral sampling interval (SSI)
 - ISRF knowledge (central wavelength, FWHM, skew, kurtosis)

Requirement Parameter	Goal (k=2)	Threshold (k=2)
Band central wavelength knowledge	0.1 nm	0.4 nm
Bandwidth knowledge	0.5 %	1 %

- Impact evaluated for different scene types (desert, ocean, rainforest, snow) and different sensors (MSI, OLCI, VIIRS)
- Most sensitive spectral bands are those in absorption windows

MATCHUP COMPARISON PROCESSING CHAIN

ESR3 – TRUTHS for Climate Workshop 27/06/2024

NPL R

Satellite Match ups Comparison Performance

A matchup is defined as an event where two satellite sensors observe approximately the same location at approximately the same time.

Analysis of matchups is a key technique to compare and cross-calibrate EO sensors in flight.

A number of aspects of satellite match up comparison make this challenging:

- 1. Spectral sampling differences
- 2. Spatial sampling differences
- 3. Viewing geometry mismatch changes surface reflectance, polarisation
- 4. Temporal mismatch changes in sun angle, atmosphere

- Defined a processing chain to prepare comparison samples for two sensors for uncertainty-quantified calibration
- Prototype software suite implemented for end-toend processing chain
- First, matchups are identified and collocated images extracted
- Following this, samples are prepared for comparison

100

80

Target (S2 MSI)

Ó

20

40 60

y_sensor

Before processing

After spectral processing

After spectral processing

Reference (TRUTHS)

y_reference

y_reference

- Reconstruct an equivalent sensor measurement from the TRUTHS spectrum
- Band integration performed to spectrally align TRUTHS to sensor using sensor SRF data

Estimated S2-equivalent observations from simulated TRUTHS spectrum

TRUTHS band = 492.52 nm

7.5 10.0 12.5 15.0 17.5 20.0

y_reference TRUTHS reconstructed S2 B02 = 492.44 nm

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

TRUTHS reconstructed S2 B02 = 492.44 nm

6

y_collocation

10

y_reference

0.0 2.5 5.0

After spectral processing

After spatial processing

y collocation

10

y collocation

7.5 10.0 12.5 15.0 17.5 20.0

y_reference

y_reference

y_collocation

- A challenge to compare different field-of-views over heterogenous surfaces
- Reconstruct equivalent field-of-view for each sample by aggregating pixels using nearest neighbour averaging

Target (S2 MSI)

S2 MSI B02 = 492.44 nm

60

v senso

S2 MSI B02 = 492.44 nm

80

40

20

80

60

40 x

20

0

20

20

40

60

y_sensor S2 MSI B02 = 492.44 nm

y collocation

80

100

10

Matchup dataset, containing samples, m:

 $K_m(\lambda_{s,i}) = L_{\text{sensor},m}(\lambda_{s,i}) - L_{\text{TRUTHS},m}(\lambda_{s,i})$

Before processing

After spectral processing

After spatial processing

MATCHUP PROCESSING SIMULATION STUDY

ESR3 – TRUTHS for Climate Workshop 27/06/2024

Matchup Processing Simulation Study Simulating Reference Scenes from Reflectance Data

 Simulated TOA Radiance Earth scenes prepared, based on PRISMA L2D surface reflectance product for different surface types: desert, rainforest, Antarctic snow.

Reference (TRUTHS)

TOA Radiance 50 m resolution 1024 bands 320-2450 nm

Target (S2 MSI) TOA Radiance 10 m resolution 10 bands 430 – 2300 nm

Simulated scene

TOA Radiance 1 m resolution 0.01 nm res 300-2500 nm

0 -0

200

700

650

500

450

Target (S2 MSI) **TOA Radiance** 10 m resolution 10 bands 430 - 2300 nm

Simulated scene

v

600

800

1000

400

TOA Radiance 1 m resolution 0.01 nm res 300-2500 nm

Simulated scene

- 39

- 38

- 37

36 radiance

35

34

33

TOA Radiance 1 m resolution 0.01 nm res 300-2500 nm

nremer as [W

220 Jeast

- 100 - 2002 -sensor calibration r function input qu

180

500

- 232

231

DESERT

300

200

100

Performance Analysis Matchup Processing Uncertainty Trees

Reference Matchup Comparison Processing

Uncertainty Tree

Sensor Matchup Comparison Processing

Uncertainty Tree

Performance Analysis Uncertainties Associated with Reference Imagery Processing

- Error correlation form evaluated for effects identified in uncertainty tree
- NPL's CoMet toolkit used to store error-covariance information associated with collocated imagery within collocation datasets & propagate this through matchup comparison processing chain using Monte Carlo method

Effect	Term in Measurement Function	Correlation Form		Uncertainty Magnitude	Uncertainty units	Source
		Wavelength	Between samples	(k=1)		
TRUTHS noise	<i>L</i> _{TRUTHS}	SNR data	Random	SNR data	N/A	Industrial Consortium
TRUTHS Calibration	<i>L</i> _{TRUTHS}	Systematic	Systematic	0.15	%	Target HIS Radiometric Accuracy
HIS Band Central Wavelength knowledge	λ _{TRUTHS}	Systematic	Structured	0.05	nm	Target HIS Wavelength Accuracy
MSI Band Central Wavelength knowledge	λ _{SRF,sensor}	Systematic	Structured	1	nm	Technical Guide: S2 Performance

www.comet-toolkit.org

github.com/comet-toolkit

Performance Analysis Comparison of Uncertainties between Scenes

- Uncertainty mostly below 1 % for bands not including spectral features
- A driver is the sensor wavelength characterisation
- Not all uncertainty contributions included (e.g. excludes viewing geometry & temporal mismatch)

Combined uncertainty, k=1 [%]

Performance Analysis Importance of Target Sensor Characterisation to Optimise Cross-Calibration with a Reference Sensor

- In-flight characterisation of sensor wavelength is critical for cross-calibration performance
- Absorption bands have been removed (e.g. B09, B10) these are the most sensitive but not a priority for cross calibration over this type of terrain

Impact of target sensor wavelength knowledge on uncertainty associated with processed comparison samples:

- Key objective for TRUTHS is to act as a SI-traceable calibration reference for the global observing system
- Defined a processing chain to prepare TRUTHS and sensor comparison samples for uncertainty-quantified comparison. This will be developed as an operational processor for the TRUTHS mission.
- Charaterisation of sensors is critical for performance of intercalibation with SITSats (e.g. TRUTHS)
- Publication in preparation on this simulation study to assess the performance of the TRUTHS-S2 MSI cross-calibration

