Policy and Health Relevant Applications of TROPOMI NO₂ in the United States

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

By: Dan Goldberg, PhD George Washington University

Sentinel-5P Mission: 5 years anniversary Tuesday 11 October 2022

ESA: TROPOMI on the Sentinel 5 Precursor Satellite

Thank you Sentinel-5P Operational Science Team!

Instrument has been *extremely* useful and reliable from an end-user standpoint

Dr. Maria Tzortziou

Dr. Shobha Kondragunta

Dr. Laura Judd

haqast.org

Dr. Susan Anenberg

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

Dr. Tracey Holloway

Perrin Krisko

Dr. Greg Yarwood

Dr. Ben de Foy

Dr. Yunyao Li

Health effects of NO₂

 Impairs cardiovascular function leading to potential cardiovascular diseases and premature mortality

• Causes and exacerbates asthma

In 2019, 1.8 million (95% Cl 0.9 - 2.8) children developed asthma due to NO₂ pollution, responsible for 16% of all asthma (a) Number of new asthma cases due to NO₂ exposure

- Co-emitted with other harmful pollutants (diesel PM, VOC air toxics, heavy metals, etc.)
- Inequitably distributed across the urban landscape; racialized, marginalized, and minoritized communities experience worse NO₂

Improved spatial resolution of TROPOMI now allows us to assemble information at the local scale (~1 km).

Questions:

- Can we use TROPOMI data to differentiate NO_x emissions from highways, ports, airports, and large points sources within a metropolitan area?
- Can we use TROPOMI data to diagnose environmental justice issues within urban areas (e.g., NO₂ in poorer neighborhoods) without the use of an additional model?

4-year average of TROPOMI NO₂ at $0.01^{\circ} \times 0.01^{\circ}$

US areas with "worst" NO₂

State	Lat	Lon	Value	Detailed location
CA	34.03	-118.18	1.41E+16	E Los Angeles, CA
NY	40.72	-73.97	1.13E+16	East River, Brooklyn, NY
NJ	40.69	-74.14	9.75E+15	Port Newark, NJ
IL	41.82	-87.77	7.31E+15	Cicero, Chicago, IL (near MDW)
WA	47.46	-122.26	6.90E+15	Tukwila, WA (SE Seatle)

Goldberg et al., 2021a

TROPOMI NO₂: Great correlation with surface measurements

 $R^2 = 0.66$ $R^2 = 0.66$; great correlationbetween satellite and surfacemonitors

- WHO (health) guideline: 5.3 ppb
- EPA standard: 53 ppb
- 0.2 × 10¹⁶ molec cm⁻² ≈ 5 ppb NO₂
- 0.5×10^{16} molec cm⁻² ≈ 10 ppb NO₂
- 1.0×10^{16} molec cm⁻² \approx 18 ppb NO₂

Near-real-time images of TROPOMI NO₂

tropomino2.us

Pandemic temporarily reduced NO₂ concentrations, but did not eliminate NO₂ disparities

Values in rural areas are filtered out to highlight changes near cities

Least white

Most white

NO₂ in least white communities during the pandemic exceeded levels in most white areas prior to the pandemic. ⁹

TROPOMI NO₂: Rapidly assessing changes after COVID-19 Difference between 2018 & 2019 vs. 2021

Fall 2021

Values < 2 × 10¹⁵ are filtered out to highlight changes near cities

vs. Gridded Emissions Inventory (1 km)

Preliminary analysis, please do not cite

Urban NOx comparison

Inventory may be underestimating NOx emissions in neighborhood with many warehouses Preliminary analysis, please do not cite

Conclusions

- Near-real-time daily TROPOMI NO₂ images are available (tropomino2.us)
- Tracking seasonal NO₂ in near-real-time (pre vs. post-COVID)
 - Urban NO₂ in East Coast cities dropped between 20 30% during Spring 2020
 - *Potential* "super-recovery" of urban NO₂ in *some cities*
- Under the right conditions, satellite NO_2 can be compared directly to NO_X emissions on annual timescales
 - NOx emissions in most US cities (pre-COVID) when aggregated to the full metropolitan area are comparable to NOx inventory estimates
 - Generally excellent *spatial* correlation between satellite and inventory
 - Some areas of improvement of the spatial allocation may be needed, especially if highresolution is requested: EJ communities (near warehouses, ports, industrial areas, etc.)

Recently published papers using TROPOMI NO₂ and OMI NO₂ data

- Goldberg, D. L., M. Harkey, L. Judd, B. de Foy, J. Johnson, G. Yarwood, T. A. Holloway (2022) Evaluating NO_x emissions and their effect on O₃ production in Texas using TROPOMI NO₂ and HCHO. Atmos. Chem. Phys., 22, 10875–10900, https://doi.org/10.5194/acp-22-10875-2022
- Kerr, G.H., D.L. Goldberg, K.E. Knowland, C.A. Keller, D. Oladini, I. Kheirbek, L. Mahoney, Z. Lu, S.C. Anenberg (2022) <u>Diesel passenger vehicle shares influenced COVID-19 changes in urban nitrogen dioxide air pollution</u>. Environmental Research Letters, doi: <u>https://doi.org/10.1088/1748-9326/ac7659</u>.
- Tzortziou, M., Kwong, C. F., Goldberg, D. L., Schiferl, L., Commane, R., Abuhassan, N., et al. (2022). Declines and peaks in NO2 pollution during the multiple waves of the COVID-19 pandemic in the New York metropolitan area. Atmospheric Chemistry and Physics, https://doi.org/10.5194/acp-22-2399-2022.
- Jing, P., & Goldberg, D. L. (2022). Influence of conducive weather on ozone in the presence of reduced NOx emissions: A case study in Chicago during the 2020 lockdowns. Atmospheric Pollution Research, 13(2), 101313. https://doi.org/10.1016/J.APR.2021.101313.
- Anenberg, S.C., A. Mohegh, D.L. Goldberg, G.H. Kerr, M. Brauer, K. Burkart, P. Hystad, A. Larkin, S. Wozniak, L. Lamsal (2022) Long-term trends in urban NO2 concentrations and associated pediatric asthma cases: estimates from global datasets. Lancet Planetary Health, https://doi.org/10.1016/S2542-5196(21)00255-2. (Anenberg and Mohegh contributed equally)
- Goldberg, D.L., S.C. Anenberg, L.N. Lamsal, Z. Lu, E.E. McDuffie, S.J. Smith, D.G. Streets (2021) <u>Urban NOx emissions around the world declined faster than anticipated between 2005 and 2019</u>. Environmental Research Letters, https://doi.org/10.1088/1748-9326/ac2c34. <u>Supplementary</u>
- Goldberg, D.G., C. Anenberg, G.H. Kerr, Z. Lu, D.G. Streets (2021) TROPOMI: A revolutionary new satellite instrument measuring NOx air pollution. EM Magazine, September 2021.
- Kerr, G.H., D.L. Goldberg, S.C. Anenberg (2021) COVID-19 lockdowns reveal persistent disparities in nitrogen dioxide pollution levels. Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.2022409118.
- Kondragunta, S., Wei, Z., McDonald, B. C., Goldberg, D. L. and Tong, D. Q. (2021) COVID-19 Induced Fingerprints of a New Normal Urban Air Quality in the United States, J. Geophys. Res. Atmos., e2021JD034797, doi:10.1029/2021JD034797.
- Goldberg, D., S. Anenberg, G.H. Kerr, A. Mohegh, Z. Lu, D.G. Streets (2021) TROPOMI NO2 in the United States: A detailed look at the annual averages, weekly cycle, effects of temperature, and correlation with surface NO2 concentrations. Earth's Future, https://doi.org/10.1029/2020EF001665.
- Mohegh, A., D. Goldberg, P. Achakulwisut, S.C. Anenberg (2020) Sensitivity of estimated NO2-attributable pediatric asthma incidence to grid resolution and urbanicity. Environmental Research Letters, doi: 10.1088/1748-9326/abce25.
- Goldberg, D.L., S.C. Anenberg, D. Griffin, C.A. McLinden, Z. Lu, D.G. Streets (2020) Disentangling the impact of the COVID-19 lockdowns on urban NO2 from natural variability. Geophysical Research Letters, https://doi.org/10.1029/2020GL089269.
- Goldberg, D. L., Z. Lu, T. Oda, L. N. Lamsal, F. Liu, D. Griffin, C. A. McLinden, N. A. Krotkov, B. N., Duncan, D. G. Streets (2019), Exploiting OMI NO₂ satellite observations to infer fossil-fuel CO₂emissions from U.S. megacities, Sci. Tot., Environ., 695, 133805, https://doi.org/10.1016/j.scitotenv.2019.133805.
- Goldberg, D. L., Lu, Z., Streets, D. G., de Foy, B., Griffin, D., McLinden, C. A., Lamsal, L. N., Krotkov, N. A. and Eskes, H. (2019) Enhanced Capabilities of TROPOMI NO₂: Estimating NOx from North American Cities and Power Plants, Sci. Technol., acs.est.9b04488, doi:10.1021/acs.est.9b04488.

New technology vs. Older technology

Left column – **TROPOMI**: Launched Fall 2017; 5.5 x 3.5 km² spatial resolution

Right column: **OMI**: Launched Summer 2004; 24 x 13 km² spatial resolution

Higher spatial resolution and less instrument noise with TROPOMI, which comes at expense of having a shorter data record (only since 2018)

Goldberg et al., 2021a

TROPOMI NO₂: Rapidly assessing changes after COVID-19 Difference between 2018 vs. 2019 vs. 2020 vs. 2021 vs. 2022

Urban NOx comparison

Urban NOx comparison (Back-up)

Great agreement between TROPOMI NO₂ and the spatial allocation of the NEI NOx emissions inventory ($r^2 > 0.7$)

Red = potential NOx inventory overestimate OR satellite has difficulty observing source

Blue = potential NOx inventory underestimate OR NO₂ outflow from nearby source

Many of the "red" points are locations of point sources, and some of the "blue" points are locations with no/little emissions, but nearby very large emission sources (e.g., Central Park in NYC)

Sector-inventory of NOx emissions

2017 NOX EMISSIONS: EPA NATIONAL EMISSIONS INVENTORY 11.8 MILLION TONS PER YEAR

