CECMWF

Emulating 3D-Var data assimilation using autoencoder-like methods

Boštjan Melinc¹, Žiga Zaplotnik^{2,1}

¹University of Ljubljana, Faculty of Mathematics and Physics ²European Centre for Medium-Range Weather Forecasts

ECMWF

· eesa

Contents

- Motivation
- Method
 - Design of variational autoencoder (VAE)
 - 3D-Var cost function in the latent space of a VAE
 - Background-error covariance modelling
- Single observation experiments
 - univariate case (T₈₅₀)
 - multivariate case ($Z_{200}, u_{200}, v_{200}$)
- Alternative to using VAE: probabilistic autoencoder (PAE)
- Conclusions and outlook

Motivation

 Variational data assimilation: find the most likely state of the atmosphere given the previous forecast (background) and new observations

- 3D-Var: all observations valid at *the same time*
- 4D-Var: observations valid at *different times*
- 3D/4D-Var in global numerical weather prediction (NWP) models too expensive to be performed in gridpoint space
 it is performed in a control space defined by analytical transformations utilising manually-defined physical balances and correlations
- Weakness: tropical balances are not adequately represented using these analytical transformations
- Idea: Use neural-network-discovered transformations from gridpoint space to a reduced-order latent space and perform variational cost function minimisation in the latent space

Variational autoencoder (VAE)

- VAE architecture based on Brohan (2022)
- Input data: daily mean T_{850} from ERA5 reanalysis on latitude-longitude grid (0.25° × 0.25° resolution \rightarrow 720 × 1440 grid points)

- Training: reconstruction + regularisation
- Regularisation ensures Gaussian properties of the latent vector elements required for variational DA, and smoothness of the latent space

3D-Var cost function

- Assumptions:
 - Background and observations are independent
 - Their errors are Gaussian
- Cost function:

$$\mathcal{J}(\mathbf{x}) = \mathcal{J}_b + \mathcal{J}_o =$$

= $(\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \{\mathbf{y} - H(\mathbf{x})\}^{\mathrm{T}} \mathbf{R}^{-1} \{\mathbf{y} - H(\mathbf{x})\}$

x ... state of the atmosphere in the grid point space

ECMWF

· eesa

- \mathbf{x}_{b} ... background vector
- **B** ... background-error covariance matrix
- **y** ... observation vector
- H ... observation operator
- **R** ... observation-error covariance matrix

$$\mathbf{x}_a = \arg \min_{\mathbf{x}} \mathcal{J}(\mathbf{x})$$

 $\mathbf{x}_a \dots$ analysis

• Conventional cost function:

$$\mathcal{J}(\mathbf{x}) = \mathcal{J}_b + \mathcal{J}_o =$$

= $(\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \{\mathbf{y} - H(\mathbf{x})\}^{\mathrm{T}} \mathbf{R}^{-1} \{\mathbf{y} - H(\mathbf{x})\}$

eesa

ECMWF

• Cost function in latent space:

$$\mathcal{J}_{z}(\mathbf{z}) = \mathcal{J}_{bz} + \mathcal{J}_{oz} =$$
$$= \frac{(\mathbf{z} - \mathbf{z}_{b})^{\mathrm{T}} \mathbf{B}_{z}^{-1} (\mathbf{z} - \mathbf{z}_{b})}{(\mathbf{z} - \mathbf{z}_{b})^{\mathrm{T}} \mathbf{B}_{z}^{-1} (\mathbf{z} - \mathbf{z}_{b})} + [\mathbf{y} - H\{D(\mathbf{z})\}]^{\mathrm{T}} \mathbf{R}^{-1} [\mathbf{y} - H\{D(\mathbf{z})\}]$$

z ... latent vector

- **z**_b ... background defined in latent space
- **B**_z ... background-error covariance matrix

y ... observations vector

H ... observation operator

D ... decoder

R ... observation-error covariance matrix

$$\mathbf{z}_a = \arg \min_{\mathbf{z}} \mathcal{J}_z(\mathbf{z})$$

z_a ... latent space analysis

ECMWF Cesa

Setup of observing system simulation experiments

- Background simulated from ground truth for previous day (*d*-1)
- Observations simulated from ground truth for present day (d)
- Ensemble approach: 150 ensemble members for background (perturbed according to B_z) and observations (perturbed according to R)

Background-error covariance matrix

$$\begin{split} \mathbf{B}_{z} &= \left\langle \left(\mathbf{z}_{b} - \mathbf{z}_{t}\right) \, \left(\mathbf{z}_{b} - \mathbf{z}_{t}\right)^{\mathrm{T}} \right\rangle \\ &= \left\langle \left(\mathbf{z}_{t}^{d-1} - \mathbf{z}_{t}^{d}\right) \, \left(\mathbf{z}_{t}^{d-1} - \mathbf{z}_{t}^{d}\right)^{\mathrm{T}} \right\rangle \end{split}$$

- **B**_z quasi-diagonal => we **only use the diagonal elements** for its inverse
- Sampling perturbed background latent vectors:
 - Recall from VAE:

$$z_i = \mu_{Ei} + \hat{z}_i \frac{\sigma_{Ei}}{\sigma_{Ei}}, \quad \hat{z}_i \sim \mathcal{N}(0, 1)$$

• What we do:

$$z_{bi} = \mu_{Ei} + \hat{z}_i \, \sigma_{bi}, \quad \hat{z}_i \sim \mathcal{N}(0, 1)$$

· e esa

ECMWF

· eesa

Single observation experiments in midlatitudes

- **Example:** observation above Ljubljana, Slovenia (46.1°N, 14.5°E)
- Background for 2019-04-15
- Preset observation departure $\delta T^o_{850} = T^o_{850} T^b_{850} = 3 \,\mathrm{K}$ and standard deviation $\sigma_o = 1 \,\mathrm{K}$

ECMWF Cesa

• σ_a significantly reduced with respect to σ_b only in the area of the positive increment

Single observation experiments in tropics

- Example: observation above Eastern Equatorial Pacific (0°N, 85°E) ($\delta T_{850}^o = 3 \text{ K}, \sigma_o = 1 \text{ K}$)
- ENSO pattern
- Weak increment as $\sigma_o \gg \sigma_b$
- Same magnitude of increment in tropics and midlatitudes as σ_b in the midlatitudes is much greater than in the tropics (climatological B matrix (Fisher, 2003))

ECMWF

· e esa

• σ_a/σ_b reduction elongated towards W (lower branch of Pacific Walker circulation)

Quarterly Journal of the Royal Meteorological Society

RESEARCH ARTICLE 🔂 Open Access 💿 🛈

3D-Var data assimilation using a variational autoencoder

CECMWF

· e esa

Boštjan Melinc 🔀, Žiga Zaplotnik

First published: 24 April 2024 | https://doi.org/10.1002/qj.4708

Single observation experiments: multivariate case (Z₂₀₀, U₂₀₀, V₂₀₀)

- Ljubljana
- Observed Z₂₀₀

 $\delta Z_{200}^o = 300 \,\mathrm{m}^2/\mathrm{s}^2$ $\sigma_o = 100 \,\mathrm{m}^2/\mathrm{s}^2$

 Top row: Correlation ar

Correlation and cross-correlation functions derived using the geostrophic increment assumption (from Kalnay, 2003)

ECMWF

· e esa

VAE alternatives

- The advantages of VAE over standard AE:
 - Gaussian properties of the latent vector elements
 - **Smoothness** of the latent space
- Downsides of VAE for our approach:
 - Loss function: trade-off between reconstruction and regularization
 - We do not need stochasticity
- Possible alternative: Probabilistic AutoEncoder (PAE) (Böhm and Seljak, 2022)
 - 1. Train a standard AE (reconstruction)
 - Train a bijective transformation (normalizing flow, NF) from possibly non-Gaussian latent space *z* to Gaussian latent space *u* (regularisation)

Probabilistic autoencoder (PAE)

• Similar structure of AE as in VAE + NF (RealNVP)

$$\begin{aligned} \mathbf{B}_{u} &= \left\langle \left(\mathbf{u}_{t} - \mathbf{u}_{b}\right) \left(\mathbf{u}_{t} - \mathbf{u}_{b}\right)^{\mathrm{T}} \right\rangle \\ &= \left\langle \left(\mathbf{u}_{t}^{d} - \mathbf{u}_{t}^{d-1}\right) \left(\mathbf{u}_{t}^{d} - \mathbf{u}_{t}^{d-1}\right)^{T} \right\rangle \end{aligned}$$

ECMWF

· e esa

Increment comparison – Ljubljana

Increment comparison – Eastern Equatorial Pacific

ECMWF Cesa

Conclusions and outlook

- We propose a neural-network-based method for variational data assimilation of atmospheric observations in a reduced-dimension latent space discovered by an autoencoder-like neural network
- We define a 3D-Var cost function in the latent space
- **B**_z is shown to be **quasi-diagonal**
- **B**_z provides a **unified representation of both tropical and extratropical covariances**
- We aim to further extend this method to:
 - multiple variables and levels,
 - 4D-Var,
 - using ensemble information to construct flow-dependent B_z which captures the errors associated with the current state of the atmospheric flow,
 - represent smaller-scale balances

ECMWF CCS

Bibliography

- V. Böhm and U. Seljak. Probabilistic Autoencoder. 2022. URL <u>https://arxiv.org/abs/2006.05479v4</u>.
- P. Brohan. Machine Learning for Data Asimilation. 2022. URL <u>https://github.com/philip-brohan/Proxy_20CR</u>.
- M. Fisher. Background error covariance modelling. In *Seminar on Recent Development in Data Assimilation*, pages 45–63, Shinfield Park, Reading, 2003. ECMWF, ECMWF.
- A. E. Gill. Some simple solutions for heat-induced tropical circulation. *Quarterly Journal of the Royal Meteorological Society*, 106(449):3759–3777, 1980.
- B. J. Hoskins and D. J. Karoly. The steady linear response of a spherical atmosphere to thermal and orographic forcing. *Journal of the atmospheric sciences*, 38(6), 1179-1196, 1981.
- E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 2003.
- D. P. Kingma and M. Welling. An introduction to variational autoencoders. *Foundations and Trends in Machine Learning*, 12(4):307–392, 2019.
- B. Melinc and Ž. Zaplotnik. 3D-Var data assimilation using a variational autoencoder. *Quarterly Journal of the Royal Meteorological Society*, 2024.
 URL <u>https://doi.org/10.1002/qj.4708</u>.

Representation of temperature fields with VAE

· e esa

Quantitative evaluation for single observation experiments

- **Example:** observation above Ljubljana, Slovenia (46.1°N, 14.5°E)
- Theoretical analysis increment and standard deviation at observation location:

$$\delta T^a_{850} = \frac{\delta T^o_{850} / \sigma^2_o}{1 / \sigma^2_b + 1 / \sigma^2_o} \qquad \sigma_a = \sqrt{\frac{1}{1 / \sigma^2_b + 1 / \sigma^2_o}}$$

·eesa

CECMWF

• Experimental results:

Location	δT^o_{850}	σ_o	σ_b	Theo. δT^a_{850}	Ex. δT^a_{850}	Theo. σ_a	Ex. σ_a
Ljubljana	3.03	1.07	1.91	2.31	2.19	0.93	0.94
SW Indian Ocean	3.14	0.95	3.86	2.96	2.95	0.92	0.95
Singapore	3.11	0.99	0.19	0.11	0.08	0.18	0.18
Equatorial Africa	3.14	1.10	0.61	0.75	0.59	0.54	0.54
E Pacific	2.93	1.08	0.22	0.12	0.09	0.22	0.21