

PROGRAMME OF THE EUROPEAN UNION

co-funded with

Advances in satellite-derived emissions using Sentinel-5p

Ronald van der A, Jieying Ding, Bas Mijling, Mengyao Liu, Jos de Laat, Xiumei Zhang, Xin Zhang, Henk Eskes

- TROPOMI has given a boost to the retrieval of emissions.
- This overview is incomplete, because only inversions developed at KNMI will be shown.

PROGRAMME OF THE

EUROPEAN UNION

·eesa

co-funded with

opernicus

- Emissions of
 - NO_x (full inversion with DECSO)
 - NH₃ (in parallel to NOx using DECSO)
 - CO₂ (ratio method)
 - CH₄ (mass balance divergence method)
 - SO₂ (plume fitting, DECSO)

DECSO Daily Estimates Constrained by Satellite Observations

- It is fast: one model run per assimilation step of 1 day
- No *a priori* information needed: unknown sources will become visible.
- Full error estimation of new emission inventory
- Used for <u>daily</u> NO_x and NH_3 emissions

This work is part of the H2020 project SEEDS. SEEDS develops pollutant emissions and depositions to support CAMS.

Ba

State vector forecast $\mathbf{x}^{f}(t_{i+1}) = M_{i} [\mathbf{x}^{a}(t_{i})]$ Error covariance forecast $\mathbf{P}^{f}(t_{i+1}) = \mathbf{M}_{i} \mathbf{P}^{a}(t_{i}) \mathbf{M}_{i}^{T} + \mathbf{Q}(t_{i})$ Kalman gain matrix $\mathbf{K}_{i} = \mathbf{P}^{f}(t_{i}) \mathbf{H}_{i}^{T} [\mathbf{H}_{i} \mathbf{P}^{f}(t_{i}) \mathbf{H}_{i}^{T} + \mathbf{R}_{i}]^{-1}$ State vector analysis $\mathbf{x}^{a}(t_{i}) = \mathbf{x}^{f}(t_{i}) + \mathbf{K}_{i}(\mathbf{y}_{i}^{o} - H_{i} [\mathbf{x}^{f}(t_{i})])$ Error covariance analysis $\mathbf{P}^{a}(t_{i}) = (\mathbf{I} - \mathbf{K}_{i}\mathbf{H}_{i}) \mathbf{P}^{f}(t_{i})$

5	10	15 N Mg/km	20 12/yr	25	30

Regions at various resolutions

DECSO 2019

(0.1°x0.1°)

5	10	15	20	25	30
---	----	----	----	----	----

West Siberia: gas compressor stations along pipeline to transport gas to Europe show up in map of NOx emissions

Van der A et al., npj Clim. Atmos. Sci., 2020

Emissions from inland ships on the Yangtze river

Data from AIS signals that we use:

- Type of ship
- Speed
- Size
- => Emissions calculated per ship or per km

AIS signals received at NUIST, Nanjing.

See poster by Xiumei Zhang (#21)

Arctic Lightning NO2

 NO2 emissions from lightning in the Arctic region derived from TROPOMI observations

by Xin Zhang (NUIST-KNMI centre in Nanjing)

Ammonia (NH3) emissions

- Cross-track Infrared Sounder (CrIS) observations in combination with TROPOMI
- DECSO version of NH3, run in parallel to NOx.

NH3 concentrations for 2020 (CrIS)

2 4 6 Gg NH3/cell/year

0

10

8

Country totals of NOx and NH3 (vs. LRTAP)

CO₂ emissions

Method:

- NOx emissions are split into anthropogenic and biogenic emissions
- DECSO => only <u>anthropogenic</u> NO_x emissions from TROPOMI
- Ratio of CO2/NOx from e.g. EDGAR on the same grid as DECSO
- Apply ratio to NOx emissions
 - => CO2 emissions

gridded co2 emissions from DECSO nox using EDGAR CO2/NOx emission ratio (g/grid/year)

0.0E+00 4.0E+11 8.0E+11 1.2E+12 1.6E+12 2.0E+12 Data Min = 5.4E+07, Max = 1.6E+13

gridded co2 emissions from DECSO nox using EDGAR CO2/NOx emission ratio

Methane emissions - method

- Long living gases -

Mass balance incl. transport: $E = \nabla \tau + \nabla F$

$$C / \tau = 0$$

$$F = \nabla F(background) + \nabla F(emissions)$$

Includes a correction for false signals due to (1) albedo and (2) orography

Methane emissions from the oil/gas industry in Texas (2019)

based on **TROPOMI**

Published in Liu et al. (GRL, 2021)

Methane emissions derived for the Middle East

See Poster by Mengyao Liu (#55)

SO2 emissions using OMI

Results using the OMI observations

Plume fitting technique

SO2 concentrations

NOx and NH3 and CO2 emissions

• Improved daily NOx emissions on a resolution of 5-20 km for anthropogenic and biogenic source sectors.

PROGRAMME OF THE

EUROPEAN UNION

co-funded with

opernicus

- In parallel to NOx also NH3 emissions are derived.
- Good agreement with bottom-up inventories but also with differences.
- From anthropogenic NOx emissions the CO2 emissions are derived.

CH4 emissions

• Global annual emissions possible gridded on 0.2 degree resolution

SO2 emissions

• Can be included in DECSO for the anthropogenic emissions. PhD study just started.

Operational emission products ?

• All shown inversions are fast enough to deliver operational emission products.

Further info

Species	Method	Detailed presentation	
CH4	Mass balance/Divergence method	Poster by Mengyao Liu (#55) Poster by Pepijn Veefkind (#57)	
CO2	Scaling NOx by emission factor	-	
NH3	DECSO (Kalman Filter)	Presentation by Jieying Ding Tuesday 12:00	
NOx	DECSO Ship emissions Lightning NO2	Presentation by Jieying Ding (Tuesday) Poster by Xiumei Zhang (#21) -	
SO2	DECSO, plume fitting	-	