

PROGRAMME OF THE EUROPEAN UNION

co-funded with

UAV-based fiducial reference measurements for the validation of Sentinel-2 surface reflectance (HCRF)

H. Morris, N. Origo, R. Morrone, M. Sinclair, C. Randall, & B. Mota (NPL) F. Camacho & J. Sanchez-Zapero (EOLab) J Dash (Uni. Southampton) L. Brown (Uni. Salford) V. Boccia (ESA)

fiducial reference measurements for vegetation

→ THE EUROPEAN SPACE AGENCY

Context for the FRM4Veg project

Converging story:

- vegetation products being different
- lack of traceability in satellite products and remedying this using invariant sites
- lack of uncertainty, traceability and fitness-for-purpose in validation data

Weiss et al 2014 Online validation exercise (OLIVE)): a web based service for validation of medium resolution land products. Application to fAPAR products

PROGRAMME OF THE EUROPEAN UNION

2009 CEOS Pilot campaign

co-funded with

opernicus

PROGRAMME OF THE EUROPEAN UNION 00

fiducial reference measurements for vegetation

ESA-funded Fiducial Reference Measurements for Vegetation (FRM4Veg)

FRMs have the following qualities:

- Documented **SI traceability** (or conform to appropriate international community standards)
- **Independent** from the satellite geophysical retrieval process
- Accompanied by an **uncertainty budget** for all instruments and derived measurements
- Adhere to community-agreed, published and openly-available measurement protocols/ procedures and management practices
- Accessible to other researchers allowing **independent verification** of processing systems

Traceability & uncertainty

"Property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty"

PROGRAMME OF THE EUROPEAN UNION

elest

co-funded with

opernicus

Validation procedure

co-funded with · Clesse

Directional-hemispherical CASE 3

opernicus

Conical-hemispherical CASE 6

Bihemispherical CASE 9

→ THE EUROPEAN SPACE AGENCY

Schaepman-Strub et al (2006) Reflectance quantities in optical remote sensing definitions and case studies. Remote Sensing of Environment,

Measurement time

Calibration

FRM4Veg considerations

DOCUMENT	DATE PUBLISHED
Background Information	
FRM4VEG Overview and Metrology Principles	June 2020
Surface Reflectance	
FRM Protocols and Procedures for Surface Reflectance	June 2020
Validation Methodology for Surface Reflectance	June 2020
Biophysical Variables	
FRM Protocols and Procedures for FAPAR and CCC	June 2020
Validation Methodology for FAPAR and CCC	June 2020

opernicus

💻 🔜 📲 🚍 💳 🕂 📲 🧮 📰 📲 🔚 📲 🚍 📲 🔤 🛶 🚳 🛌 📲 🚼 🖬 📰 📾 🗤 🌬 👘 🔶 The European Space Agency

Moving to UAVs

- DJI Matrice 600 Pro UAV
- VNIR Camera (400 nm 1000 nm)
 640 spatial bands, 273 spectral bands

PROGRAMME OF THE EUROPEAN UNION

eesa

co-funded with

opernicus

- SWIR Camera (900 nm 2500 nm)
 640 spatial bands, 270 spectral bands
- Integrated high-performance GPS/IMU

• 16-channel Velodyne Puck LITE LiDAR

💻 🔜 📲 🚍 💻 🕂 📲 🧮 🔚 📲 🔚 📲 🔚 🚛 🚳 🍉 📲 🚼 🖬 📰 📾 📾 🌬 🙌 🔸 The European Space Agency

Headwall characterisation

Further characterisation tests on the headwall Spectral characterisation Uniformity characterisation

Linearity

opernicus

PROGRAMME OF THE EUROPEAN UNION

^ Krypton spectral line lamp in an integrating sphere

< broadband source in integrating sphere with rectangular exit port

eesa

co-funded with

VNIR_G_4 Lamps_UC

PROGRAMME OF THE EUROPEAN UNION

opernicus

co-funded with

·eesa

S2 Scene

S2A Product Summary		
Date	2022-07-22T10:56:31.024Z	
Identifier	S2A_MSIL2A_20220722T105631_N0400_R094_T30SWJ_2022	
	0722T171159	
Illumination Azimuth Angle	138.8°	
Illumination Zenith Angle	23.7°	

Utilised the S2 L2 RUT tool for generating uncertainties on the L2A product (Gorrono *et al*, 2023) https://doi.org/10.31223/X5GM33

opernicus

PROGRAMME OF THE

EUROPEAN UNION

→ THE EUROPEAN SPACE AGENCY

10

0.50

Normalfit

 $\sigma = 3.29\%$ $\mu = 0.457$

·eesa

co-funded with

Flight design

Flight lines orientated to the Sentinel-2 orbit inclination 8.62°

Overlap % increased to get as many pixels at each angle (70%)

Speed (5 m/s)

Height (100 m)

GSD resolution (6 cm)

Optimised to ensure the UAV can cover the area within the battery limits

36 °C – 40 °C during measurements

MAIN FLIGHT AREA

PROGRAMME OF THE EUROPEAN UNION

Drone Processing

PROGRAMME OF THE EUROPEAN UNION

OPERNICUS co-funded with

· e esa

12

Match up Results

💻 🔜 🛃 🚍 🚥 🕂 🛛 🗮 🔚 🔄 🔜 📲 🚍 🚛 🚳 🛌 📲 ன 🖬 📲 🖶 🖛 🖓

Match up Results

 $\boldsymbol{*}$

→ THE EUROPEAN SPACE AGENCY

Conformity testing

PROGRAMME OF THE EUROPEAN UNION

15

co-funded with

opernicus

 $U_{diff} = \sqrt{U_{sat}^2 + U_{drone}^2}$

· eesa

Conformity testing

➡ ➡ → THE EUROPEAN SPACE AGENCY

Conformity testing

opernicus

17

Conclusion

FRM4Veg is about:

- Consistent and documented validation procedures
- Application of metrological principles to satellite validation
- Development of robust uncertainty estimates
- Providing fit-for-purpose validation data for vegetation products
- Utilising drones for SR is feasible and practical

PROGRAMME OF THE EUROPEAN UNION

SAVE THE DATE! SRIX4VEG 2nd Workshop 23rd – 24th November

18

Conclusion

19

¥ +

→ THE EUROPEAN SPACE AGENCY