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Mag.num

Mag.num iS the magnetic core field
model of the GFZ geomagnetism group,
In particular using most recent satel-
lite data (i.e. Swarm) and in combina-
tion with other satellite data, in particular
from CHAMP, but also from less accu-
rate calibrated platform magnetometer
data. Also essential are ground obser-
vatory data, aiming to stabilize the be-
haviour in time, even though the global
distribution is highly asymmetrical.

The Mag.num classic modelling scheme
(substantial heritage from Vincent Lesur’s
GRIMM approach) will be used as parent
model for GFZ's candidate model for the
IGRF (International Geomagnetic Refer-
ence Field, a collaborative effort of groups
worldwide to create a good quality geomag-
netic reference model). The mapped evolu-
tion in time (example right) is a window into
the Earth and needs to be forecasted for the
next IGRF.
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Modeling

: Forecast
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Modeling: Forecast

prediction in nT

Just simply fitting polynomials to past win- P19 e ekt

dows for forecasting seems usable in gen-
eral only for small time windows and low
degree. Figure right: The overall quadratic )
sum R as a simple metric on moving win- - |
dows forecasts allows to show summarized |
dependencies on internal parameters ap-

plied.

With standard AR forecast methods (using script language R, package forecast and
Burg algorithm) we can check the forecasted residuals for moving windows on the
smooth model coefficients (here: and Mag.num CHAOS-7) time series. Figure below:
On AR, for the first two coefficient time series see a fit improvement with increased

length of input time window.
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ML/Deep Learning

» To be able to extend the information
used later (i.e. by the usual time se-
ries of indices and other data and in-
formation sources), we apply Deep
Learning methods on this forecast
problem. From the suggested meth-
ods suitable for time series, Re-
current Neural Network (RNN), Long
Short-term Memory (LSTM), Gated
Recurrent Units (GRU), and Trans-
former Networks, we choose, for
now, the popular and recommended
LSTM approach. For this first ap-
proach we are using TensorFlow
with the Keras API inside the R lan-

guage.

» Currently there are no results for di-
rect comparison with the summaries
of the classic AR method, yet. For
now, at least for the simplistic in-
put sets used (F and SV time series
from Mag .num and CHAQS), that occa-
sional arcane numerical instabilities
preventing a comprehensive review
yet.

IGRF-13... a view back
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Example (LSTM forecast, on full coeff. time
series only) for index two of the SV (upper
two frames) and an example (CHAOS, index
one) with a bias misfit — or numerical insta-
bility (lower two frames).
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For some candidates we can now, 2023, compare the 2020.016 — 2023.576 Years
2020 predictions with a most recent CHAOS-7 model < 2013807
version (for a very few coefficients, see upper frames). T Caldaits = A
; Potsdam/MaxPlanck 711
The modeled recent development is rarely covered oy 096
even by the significant sc;attering of the. candidate mod- 1STerre (480
els. The table summarizes the total integral residual IPGP 1214
error of some models, compared with the most recent BGS 1659
model. NCEI 1893
But a year-spanning forecast based on auto-regression S5 2956
. : NASA/GSFC 4060
(and subsequently just extrapolated), applied on the ,
: IGRF final 995
related pre-2020 model shows an improvement of the
forecast. Forecast on CHAOS 7.14 301
Forecast on CHAQOS 7.01 1200
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Summary Next steps
* Mag.num Wwill be the parent Further exploring ma-
model for the GFZ geomag- chine learning/deep
netism group candidates to learning methods and
be submitted for the next available front-ends for
IGRF model. The SV seems forecasting of appropri-
to be the most critical prod- ate time periods to finally
uct part. apply on estimating an

« AR forecast seems suitable

IGRF SV candidate from
own parent model.

probably until one year fore- |
cast period. The applicabil- Understanding and eval-

ity for a IGRF SV candidate uate current spurious nu-

IS under testing.

» Deep learning seems to be
a good candidate to be
used in forecasting as well.
It IS open for embedding
other sources of Informa-

merical side effects be-
fore going further.

Applied first simply on co-
efficient time series, but
going to include also ap-
plicable indices and other
suitable data sources as

tion.
well.
References Evaluate the available in-
Shi, J.; Jain, M. and Narasimhan, G. formation about the sig-
(2022); Time Series Forecasting Using nificance of the input

Various Deep Learning Models, Interna-

tional Journal of Computer and Systems

SOUrces.

Engineering, Engineering and Technology,

16, 224-232.

HELMHOLTZ oo ciaiences

J




