Phenology at continental scale: one size does not fit all

Romulo Goncalves, Viktor Bakayov, Raul Zurita-Milla, and Emma Izquierdo-Verdiguier

New era...

• Today: Data exploration (e-science)

• Synthesizing theory, experiment and computation with advanced data management and statistics

Challenges

De-

E

Phenology at Continental scale...

- Understanding phenological variability
 - Studies recurring biological events and variation in space and time
- Two of the most important sources of spatiotemporal phenological data:
 - Phenological models based on weather-and/or location related factors
 - Spring Index (SI-x) which is based on temperature
 - Land surface phenological metrics derived from Earth observation sensors
 - Start of Season (SOS) is usually based on NDVI

Motivation

- No universally accepted method to extract phenological metrics from RS images
 - Multiple Vegetation Indices
 - NDVI, EVI, etc.
 - Several software packages
 - TimeSat, Spirits, and Sen2Agri
 - Different phenology extraction methods
 - Fitting functions, spike removal and parameters

One size does not fit all...

- Vegetation Indices
 - Normalized Difference Vegetation Index (NDVI)
 - Enhanced Vegetation Index (EVI)
- TimeSat (<u>http://web.nateko.lu.se/timesat/timesat.asp</u>)
 - Fitting functions
 - Asymetric Gaussian (AG)

Figure extracted from: https://slideplayer.com/slide/7971141/

- Savitzky-Golay (SG)
- Double Logistic (DL)
- Spike removal _

MODIS EVI vs. NDVI

0.2

vate

Part I: Computation Platform

Computational platform

- Cloud-based solution
- Data stored in the original file formats
 - GeoTiff and HDF
 - Accessible via S3 API
- Based on Apache Spark
- Jupyter notebooks
 - Python, R or Scala

Automated and traceable deployment

Distributed SOS computation

- Vegetation Indices computed with Spark
 - Accessible via S3 API
- Spatial data partitioning
 - TimeSat requires the time-series to have minimum length 3 years
 - It is set to find n-1 seasons
- Spark and TimeSat
 - TimeSat requires POSIX file system to read input data and output data
 - The extent and meta-data provided as a "settings file" for TimeSat
 - $-\,$ The computation of SOS was executed in parallel over a series of VMs in the cloud

Part II: Phenology studies

Vegetation Indices

- Dataset provided by Copernicus Global Land Service
 - Spanned 19 years (1999–2017) by combining SPOT-VEGETATION (1998–2014) and PROBA-V (2014–present) satellite data.
 - The product has a spatial resolution of 1km and is available as 10–day composites.
- The NDVI uses the near-infrared and red channels of the sensor:

NDVI = $\frac{\rho_{\text{nir}} - \rho_{\text{red}}}{\rho_{\text{nir}} + \rho_{\text{red}}}$

• The EVI also uses the blue channel: $EVI = G \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + C_1 \rho_{red} - C_2 \rho_{blue} + L}$

- Requires setting a set of coefficients C1 = 6, C2 = 7.5, L = 1, and G = 2.5 [1].

[1] - A. Verhegghen, S. Bontemps, and P. Defourny, "A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily SPOT-VEGETATION observations," International Journal of Remote Sensing, vol. 35, no. 7, 2014.

Phenology studies

- Study the validity and coherence of various SOS metrics derived using NDVI and EVI and different fitting functions.
 - Vegetation Indices
 - Normalized Difference Vegetation Index (NDVI)
 - Enhanced Vegetation Index (EVI)
 - Fitting functions
 - Asymetric Gaussian (AG)
 - Savitzky-Golay (SG)
 - Double Logistic (DL)

Compare SOS products and functions

- NDVI wider range
- Asymmetric Gaussian (AG) fitting function behaves similarly to Double Logistic (DL) fitting function

Experiment	Min	Max	Mean
NDVI- AG	-10	204	113.8
NDVI - SG	-1.6	201.77	107.9
NDVI - DL	-8.92	205.64	113.5
EVI- AG	13	192	107.2
EVI - SG	8	186	100.6
EVI - DL	15	191	107.3

SOS mean value

- Most of the values clustering around the 100th day.
- The histograms are skewed to the left
- In the 150 200 days range
 - biggest differences are observed between VIs
 - the NDVI experiments show higher SOS values

Compare SOS products and functions

- Standard deviation (SD) to assess the seasonal spatial change across all the years
- Min and Max SD after the highest and lowest 2% were removed (avoid outliers)
- Between NDVI-AG and EVI-AG the predictions in some cases are near 40 days difference

Experiment	Min	Max
NDVI- AG	4.92	137.80
NDVI - SG	6.01	146.77
NDVI - DL	5.04	137.88
EVI- AG	5.07	97.91
EVI - SG	4.98	106.81
EVI - DL	4.95	95.93

Ecological regions

- Designated by the U.S. Environmental Protection Agency (EPA) and the Commission for Environmental Cooperation (CEC)
- Level III 120 eco-regions, only 100 visible the others are in Alaska.

Ecological regions

Part III: Lessons and Future work

Lessons and Future Work

- Reduce the interpolation and pre-processing stages
 - Each pre-processing stage removes relevant information
- Additional RS data sets and perform a more detailed study of various other methods to extract land surface phenology metrics
- Data exploration in such multi-dimensional search space is challenging
 - Work with Sentinel-2 from ESA Copernicus program: 10 meters resolution
- Ground-based data

Ground-based data

- USA- NPN
 - Between 1995 and 2005 only 50 sites per year
 - From 2005 sharply increased to more than 1400 sites in 2017
- Issues:
 - Often collected by volunteers
 - Spatially sparse

Let's stay in touch

+31 (0)20 460 4770
info@esciencecenter.nl
www.esciencecenter.nl
blog.esciencecenter.nl

eScienceCenter
eScienceCenter
linkd.in/1j2uS8S

Romulo Goncalves Tech Lead in Data Management r.goncalves@esciencecenter.nl

netherlands Science center