

Satellite Sea Surface Salinity products for better understanding freshwater fluxes in the Southern Ocean

V. González-Gambau¹, E. Olmedo¹, C. González-Haro¹, A. García-Espriu¹, A. Turiel¹, A. Silvano², A. Naveira-Garabato², A.Narayanan², R. Catany³, M. Umbert¹, N. Hoareau¹, R. Sabia⁴, D. Fernández⁴

2024 European Polar Science Week

- SO-FRESH project
- EO SSS maps in the Southern Ocean
- SO-FRESH SSS processor: Algorithms development
- Performance of SO-FRESH L3 SSS product
- Conclusions and way forward

SO-FRESH project

Understand freshwater fluxes in the Southern Ocean, and their role as a driving factor of climate

3/16

SO-FRESH project

Understand freshwater fluxes in the Southern Ocean, and their role as a driving factor of climate

EO SSS in the Southern Ocean: Challenges

SO Fresh

- Contamination of the radiometric signal close to coast & ice edges
- Low sensitivity of satellite measurements to SSS in cold waters
- Low SSS variability in the region

[Corbella et al., 2015, GRSL]

EO SSS in the Southern Ocean

- Contamination of the radiometric signal close to sea ice
- Low sensitivity of satellite measurements to SSS in cold waters
- Low SSS variability in the region

[[]Yueh et al., 2001, TGRS]

SO Fresh

EO SSS in the Southern Ocean

SO Fresh Southern Occass Freshwater

- Contamination of the radiometric signal close to sea ice
- Low sensitivity of satellite measurements to SSS in cold waters
- Low variability of SSS in the region

Algorithm development: L0-L1

Method: ALL-LICEF+Gkj correction [1, 2, 3]

Impact: Improved stability Mitigation of land-sea/ice-sea contamination on TB

<u>Method:</u> Nodal sampling [4,5] with dynamical sea ice mask

<u>Impact:</u>

Reduction of radiometric noise (improvement of signal to noise ratio)

[1] (Corbella et al., 2016, IGARSS Proc.)
[2] (Corbella et al., 2015, GRSL)
[3] (González-Gambau et al., 2017, JSTARS)

[4] (González-Gambau et al., 2016, RSE)[5] (González-Gambau et al., 2018, IGARSS Proc.)

SO Fresh

Nodal sampling with dynamic sea-ice mask

NS selects nodal points based on their type: land, ocean, sky, or have the same SIC or in a range of \pm 10%

SO Fresh

Algorithm development: L2-L3

Method:

Debiased non-Bayesian retrieval [6] as a function of sea ice distance

Impact:

Mitigation of spatial systematic SSS biases and increase of coverage close to ice edges

Method:

Spectral analysis (effective spatial resolution), singularity analysis (geophysical consistency)

Impact: Selection of the most accurate auxiliary SST

<u>Method:</u> Temporal correction of L3 maps with Argo [7]

<u>Impact:</u> Mitigation of temporal biases

[6] (Olmedo et al., 2016, RSE)[7] (Olmedo et al., 2018, Remote Sensing)

SO-FRESH L3 SSS product

SO Fresh Southern Occas Freshwater

SO-FRESH L3 SSS product

Geographical coverage	$180^{\circ}W \rightarrow 180^{\circ}E; 30^{\circ}S \rightarrow 90^{\circ}S$	
Temporal coverage	2011-02-01 to 2023-03-31	
Spatial resolution	25km x 25km	
Coordinates reference system	EASE-SL 25km	
Temporal resolution 9-day maps generated daily		
Version 1.0		
DOI https://doi.org/10.20350/digitalCSIC		
Source BEC FTP		

González Gambau, V.; Olmedo, E.; García Espriu, A.; González-Haro, C.; Turiel, A.; 2023; "Southern Ocean Sea Surface Salinity Level 3 maps (V.1.0) [Dataset]"; DIGITAL.CSIC; https://doi.org/10.20350/digitalCSIC/15493

Metadata

BEC FTP

. . .

FTP Server Status

Running without

incident

The main goal of Barcelona Expert Center (BEC) is to generate higher added-value products of interest for a broad range of users. With this aim we offer the following variables:

Southern Ocean Sea Surface Salinity Level 3 maps (V.1.0)

in Open Science Catalog 1 Up 1 Overview

Description

Home

Catalog

Search

API Access

å LOG IN

ESA Open Science Catalogue

Release date	7/31/2023, 12:00:00 AM UTC	
Start date	2/1/2011, 12:00:00 AM UTC	
End date	3/31/2023, 11:59:59 PM UTC	
Data Version	1	
Updated	5/10/2024, 1:27:38 PM UTC	
if		
Parameter	Name: sea_surface_salinity	
Ocumentation		
DOI	10.20350/digitalCSIC/15493	
Open Science Catalog		
Themes	Oceans	
Missions	SMOS	
Project	SO-FRESH	SUGGEST CHANGES
Variables	Sea Surface Salinity	

Product performance: close to coast & ice edge

Marine mammals, <u>https://doi.org/10.17882/45461</u>, **2024-03 release**

Spatial stats in 1° grid: Median RMS: 0.31 Number matchups: 723991

Product performance: close to coast & ice edge

Data from TSG research ships provided by G. Aulicino & Y. Cotroneo

0.9

0.8

Spatial stats in 1° grid: Median RMS: 0.23 Number matchups: 11402

2D histograms:

Product performance: Subantarctic & subtropical fronts

: 1276

: 0.52

: 0.21

35

35.5

34.5

11 / 16

: 1196

: 0.77

Y-intercept : 8.07

35

: 0.45

: 0.11

: 0.31

35.5

Slope

 R^2

Bias

STD

34.5

Product performance: Interannual variability

Product performance: Seasonal variability

Conclusions

- Algorithm developments were specially focused on the quality improvement close to ice edges.
- The performance assessment of the SO-FRESH L3 SSS product shows:
 - a very high performance far from the ice edge (null bias, ~0.17 psu of std.dev.),
 - considering 200 km far away from the ice edge, bias is in the order of ~0.05 and std.dev. ~[0.2-0.39],
 - a proper description of the Antarctic Circumpolar Current,
 - where there's freshwater near the ice,
 - a consistent seasonal and interannual variability with the regional SOSE model,
 - sometimes, in the first 100-200 km of the ice edge, the satellite detects saltier levels than in situ measurements
- SO-FRESH L3 SSS product has been shown to be useful
 - To gain a deeper **understanding** of the **mechanisms driving the decline in sea ice extent** in the recent years
 - To improve the understanding of the drivers of **polynyas formation**.

- **Reduce the SSS uncertainty very near the ice edges** to at least 0.5 (ultimate goal: 0.1)
 - Fusion with other ocean scalars, such as the surface temperature
 - Synergies with other sensors
- Assimilate EO SSS data to improve the quality of the models in the Southern Ocean
- Ensure the continuity of the satellite SSS time series, crucial to understand drivers of the very recent changes
 - Continuity of high-resolution L-band missions is crucial

Satellite Sea Surface Salinity products for better understanding freshwater fluxes in the Southern Ocean

https://doi.org/10.20350/digitalCSIC/15493

Contact: vgonzalez@icm.csic.es

