Eric Rignot

Earth System Science

Satellite Radar Interferometry for Monitoring Ice

 Sheet Motion: Application to an Antarctic Ice Stream $ل$
When it all began ..

R. Goldstein, JPL ERS-1, ESA

1993

ERS-1/2 tandem mission

ESA flies ERS-1/2 in tandem (1-day) for 9 months.

Fart Recession of a Hest A Mini-Surge on the Ryder Glacier, Greenland,

Antarctlc Glaciar
114 Observed by Satellite Radar Interferometry
Ian Joughin, Slawek Tulaczyk, Mark Fahnestock, Ron Kwok

North and Northeast Greenland Ice Discharge from Satellite Radar Interferometry
E. J. Rignot,* S. P. Gogineni, W. B. Krabill, S. Ekholm

2006

RADARSAT-1 AMM-1, $2(1997,2000)$

CSA flies the Antarctic Mapping Mission(s).

Tributarles of West Antarctic Ice Streams Revealed by RADARSAT Interferometry

 MrAhil Mrent

Changes in the Velacity Structure of the Greenland lce Sheet

Changes in ice dynamics and mass balance of the Antarctic ice sheet By Eric Rignot*

WMO’s Polar Space Task Group

Shifted from campaign style to continuous mapping at the continental scale

UNIVERSITY
OF

CALIFORNIA 4

WMO's Polar Space Task Group

Four decades of Antarctic Ice Sheet mass balance from 1979-2017

UNIVERSITY
OF
Continent-Wide, Interferometric SAR Phase, Mapping
CALIFORNIA of Antarctic Ice Velocity

2019

Speckle tracking ~ $2 \mathrm{~m} / \mathrm{yr}$
SAR phase ~ $20 \mathrm{~cm} / \mathrm{yr}$, 5°
Still in "surface parallel flow"

Using multiple RADARSAT InSAR pairs to estimate a full three-dimensional solution for glacial ice movement
Laurence Gray ${ }^{1,2}$
Received 12 December 2010; revised 18 January 2011; accepted 28 January 2011; published 4 March 2011.

Johan J. Mohr, Niels Reeh \& Søren N. Madsen
Danish Center for Remote Sensing, Department of Electromagnetic Systems, Technical University of Denmark, DK-2800 Lyngby, Denmark

Interferometric Estimation of Three-Dimensional Ice-Flow Using Ascending and Descending Passes Ian R. Joughin, Member, IEEE, Ronald Kwok, Member, IEEE, and Mark A. Fahnestock

$$
\frac{\partial S}{\partial t}-b_{\mathrm{S}}(t)=\vec{n}_{\mathrm{S}} \cdot \vec{v}
$$

Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

Niels ReeH, ${ }^{1 *}$ Johan Jacob MOHR, ${ }^{1}$ Søren Nørvang MADSEN, ${ }^{1}$ Hans OERTER, ${ }^{2}$ - Niels S. GUNDESTRUP

- Orsted॰DTU, Electromagnetic Systems, Technical University of Denmark, Building 348, Ørsteds plads, DK-2800 Kgs. Lyngby, Denmant E-mail: nr@oersted.dtu.dk
${ }^{2}$ Alfred-Wegener-Institut für Polar und Merereforschung, Columbusstrase, D-27568 Bremerhaven, Germang
${ }^{3}$ Niels Bohr Institute for Astronomy, Physics and Geophysics, Juliane Maries Vej 30 , DK-2100 Copenhagen, Dermark

Antarctic Grounding Zone

DInSAR reveals grounding lines.
Tidal migration reveals grounding zones. Data sources: S1, RADARSAT-2, CSK-2G

Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning
 https://nsidc.org/data/NSIDC-0778/

Thwaites Glacier: the factor $\times 2$
10-km seawater intrusions

Enabling new science

Temporal and spatial scales of physical processes driving ice sheet mass balance and sea level rise (Stommel diagram)

- Early missions: annual/1 km.
- NISAR/S1: weekly/30 m.
- Future: sub-daily/higher res (5 m) for fast processes: calving, rifting, fracturing, tidal dynamics, which are vectors of rapid change.

A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity

Future of InSAR for Cryosphere Applications

- Grounding lines: S1/Harmony, NISAR/SDC (CSK-2G, Iceye).
- 3D Ice velocity: S1/Harmony, NISAR, (ROSE-L, SAOCOM-1/2, PALSAR-3, CSK-2G, Iceye).
- Elevation change (ice melt): TDX, Harmony.
- Fast processes (Ice fracturing, tidal dynamics)

Future of InSAR for Cryosphere Applications

Permafrost: Problem is decorrelation, then mixture of processes: dynamic thawing/freezing, temperature, soil type, land cover, precipitation. Goal is ALT and permafrost layer thickness (Strozzi et al., 2018).
Progress will be significant w. L-band radars and w. radar sounders (DEBRIS, STRATUS)

Future of InSAR for Cryosphere Applications \quad.

Sea ice: Horizontal motion complete with feature tracking but does not include leads and fractures. 3D motion is complicated by block rotation, tilting, fracture. Requires fast (ATI) repeat pass (Damman et al., 2019)
Snow Water Equivalent: density + depth + electric path length, remains difficult.

Conclusions

Future requires interferometric-phase systems, high coherence, fast repeat, high resolution to resolve physical processes that matter most to ice dynamics: grounding line dynamics, 3D flow, fracturing, ice melting.

Need data from multiple platforms to achieve observation objectives (e.g. DEM and 3D).

Need radar sounding mission and ocean temperature observation network as (missing) complement.

Other cryosphere applications will benefit from more experience interpreting radar signals at long wavelengths in complex environments in terms of physical processes.

