

Study of the retrieval of ice crystal habits from the far infrared spectral radiance to be measured by the FORUM sounder

Gianluca Di Natale, Marco Ridolfi and Luca Palchetti

ATMOS 2024, Bologna (IT), 1st - 5th July

www.ino.cnr.it www.ino.cnr.it

Gianluca Di Natale

provided by Dr. Massimo Del Guasta

Gianluca Di Natale

Gianluca Di Natale

Gianluca Di Natale

Ice crystals basic structure

From "Why are snowflakes like this?" Veritasium, interview to Prof. Kenneth Libbrecht

Gianluca Di Natale

Crystal shape dependence on environmental conditions

NAKAYA DIAGRAM

Gianluca Di Natale

Crystal shape dependence on environmental conditions

NAKAYA DIAGRAM

We still don't have a complete and accurate model to predict habit evolution!

Gianluca Di Natale

Why study cirrus clouds?

Ice clouds are extremely important to determine the Earth's Radiation Budget and they have a strong impact on climate

Gianluca Di Natale

Single scattering properties of ice crystals

Research and Earth Studies Group

Single scattering properties of ice crystals

$$n(L, L_m) = N_0 L^{\mu} e^{-(\mu+3)\frac{L}{L_m}}$$

PARTICLE SIZE DISTRIBUTION (PSD)

PARTICLE SIZE DISTRIBUTION (PSD) $n(L, L_m) = N_0 L^{\mu} e^{-(\mu+3)\frac{L}{L_m}}$ EFFECTIVE DIAMETER $D_{ei} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} V_h(L)n(L, L_m) dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L)n(L, L_m) dL}$

PARTICLE SIZE DISTRIBUTION (PSD) $n(L, L_m) = N_0 L^{\mu} e^{-(\mu+3)\frac{L}{L_m}}$ EFFECTIVE DIAMETER $D_{ei} = \frac{\sum_{h} D_{h} \int_{L_{min}}^{L_{max}} V_{h}(L) n(L, L_m) dL}{\sum_{h} D_{h} \int_{L_{min}}^{L_{max}} A_{h}(L) n(L, L_m) dL}$ habit fractions

 $n(L, L_m) = N_0 L^{\mu} e^{-(\mu+3)\frac{L}{L_m}}$ PARTICLE SIZE DISTRIBUTION (PSD) $D_{ei} = \frac{\sum_{h} p_h \int_{L_{min}}^{L_{max}} V_h(L) n(L, L_m) dL}{\sum_{h} p_h \int_{L_{min}}^{L_{max}} A_h(L) n(L, L_m) dL}$ **EFFECTIVE DIAMETER** $\langle Q_e \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{e,h\nu}(L) A_h(L) n(L,L_m) dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L) n(L,L_m) dL}$ EXTINCTION EFFICIENCY $\langle Q_a \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{a,h\nu}(L) A_h(L) n(L, L_m) dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L) n(L, L_m) dL}$ ABSORPTION EFFICIENCY

PARTICLE SIZE DISTRIBUTION (PSD)

$$n(L, L_m) = N_0 L^{\mu} e^{-(\mu+3)\frac{L}{L_m}}$$
EFFECTIVE DIAMETER

$$D_{ei} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} V_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L)n(L, L_m)dL}$$
EXTINCTION EFFICIENCY

$$\langle Q_e \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{e,h\nu}(L)A_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L)n(L, L_m)dL}$$
ABSORPTION EFFICIENCY

$$\langle Q_a \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{a,h\nu}(L)A_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L)n(L, L_m)dL}$$
ASYMMETRY FACTOR

$$\langle g \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} g_h(L)Q_{s,h\nu}(L)A_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{s,h\nu}(L)A_h(L)n(L, L_m)dL}$$

Gianluca Di Natale

Sensitivity to the habits

Let's fix an ice cloud between 8 km and 10 km and simulate FORUM observations obtained for different latitudes and different ice clouds assuming an homogeneous habit distribution

The SACR code (*Di Natale et al.* 2020, JQSRT) is used to simulated the radiative trasfer in the presence of ice clouds

Sensitivity to the habits

Gianluca Di Natale

Sensitivity to the habits

Far InfraRed spectrum represents the perfect candidate for ice crystal habits retrieval !

Gianluca Di Natale

PARTICLE SIZE DISTRIBUTION (PSD)

$$n(L, L_m) = N_0 L^{\mu} e^{-(\mu+3)\frac{L}{L_m}}$$
EFFECTIVE DIAMETER

$$D_{ei} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} V_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L)n(L, L_m)dL}$$
EXTINCTION EFFICIENCY

$$\langle Q_e \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{e,h\nu}(L)A_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L)n(L, L_m)dL}$$
ABSORPTION EFFICIENCY

$$\langle Q_a \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{a,h\nu}(L)A_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L)n(L, L_m)dL}$$
ASYMMETRY FACTOR

$$\langle g \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} g_h(L)Q_{s,h\nu}(L)A_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{s,h\nu}(L)A_h(L)n(L, L_m)dL}$$

Spectroscopy and Photonics for Environmental Research and Earth Studies Group

Gianluca Di Natale

PARTICLE SIZE DISTRIBUTION (PSD)

$$n(L, L_m) = N_0 L^{\mu} e^{-(\mu+3)\frac{L}{L_m}}$$
EFFECTIVE DIAMETER

$$D_{ei} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} V_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L)n(L, L_m)dL}$$
EXTINCTION EFFICIENCY

$$\langle Q_e \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{e,h\nu}(L)A_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L)n(L, L_m)dL}$$
ABSORPTION EFFICIENCY

$$\langle Q_a \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{a,h\nu}(L)A_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} A_h(L)n(L, L_m)dL}$$
ASYMMETRY FACTOR

$$\langle g \rangle_{\nu} = \frac{\sum_h p_h \int_{L_{min}}^{L_{max}} g_h(L)Q_{s,h\nu}(L)A_h(L)n(L, L_m)dL}{\sum_h p_h \int_{L_{min}}^{L_{max}} Q_{s,h\nu}(L)A_h(L)n(L, L_m)dL}$$

Gianluca Di Natale

Gianluca Di Natale

The algorithm should meet the condition: $\sum_{h=1}^{N} p_h = 1$

The algorithm should meet the condition: $\sum_{h=1}^{N} p_h = 1$

 $\mathbf{q} = (q_1, \dots, q_N) \rightarrow \mathbf{p}(\mathbf{q}) = (p_1(\mathbf{q}), \dots, p_N(\mathbf{q}))$

 $q_1,\ldots,q_N\in \left[\mathbf{0,1}\right]$

Gianluca Di Natale

The algorithm should meet the condition: $\sum_{h=1}^{N} p_h = 1$

$$\mathbf{q} = (q_1, \dots, q_N) \rightarrow \mathbf{p}(\mathbf{q}) = (p_1(\mathbf{q}), \dots, p_N(\mathbf{q}))$$

 $q_1,\ldots,q_N\in \left[\mathbf{0,1}\right]$

$$\begin{cases} p_1(\mathbf{q}) = q_1 \\ p_2(\mathbf{q}) = q_2(1 - p_1(\mathbf{q})) = q_2(1 - q_1) \\ p_3(\mathbf{q}) = q_3(1 - p_1(\mathbf{q}) - p_2(\mathbf{q})) = q_3(1 - q_1 - q_2(1 - q_1)) \\ \vdots \\ p_{N-1}(\mathbf{q}) = q_{N-1}(1 - p_1(\mathbf{q}) - \dots - p_{N-2}(\mathbf{q})) = q_{N-1}(1 - \sum_{h=1}^{N-2} p_h(\mathbf{q}) \\ p_N(\mathbf{q}) = 1 - \sum_{h=1}^{N-1} p_h(\mathbf{q})$$
 From Di Natale and Palchetti, 2022, JQSR

The algorithm is integrated in the SACR code

Change of

Variables !

Gianluca Di Natale

Scenarios

				OD				Լ _m (µm)				275 synthotic		
Tropics				0.1				40						
				0.5			100				J/J Synthetic			
Polar			lue	1.0				200				scenarios		
				2.0				300						
				4.0				400						
		p_1	p_2	p_3	p ₄	p_1	p_2	p_3	p_4	p ₁	p_2	p_3	p_4	
		(HC)	(SBR)	(DX)	(PL)	(HC)	(SBR)	(DX)	(PL)	(HC)	(SBR)	(DX)	(PL)	
		Mid-latit		le		Tropic		S		Polar				
	a)	0.80	0.10	0.05	0.05	0.80	0.10	0.05	0.05	0.80	0.10	0.05	0.05	
	b)	0.10	0.80	0.05	0.05	0.10	0.80	0.05	0.05	0.05	0.80	0.05	0.10	
	c)	0.05	0.10	0.80	0.05	0.05	0.05	0.80	0.10	0.05	0.05	0.80	0.10	
	d)	0.05	0.05	0.10	0.80	0.10	0.05	0.05	0.80	0.05	0.05	0.10	0.80	
	e)	0.20	0.30	0.30	0.20	0.30	0.25	0.25	0.20	0.40	0.10	0.40	0.10	

Gianluca Di Natale

Results

Let's start with a self consinstency study of the algorithm by using free noise simulated observations

Optimal estimation approach with 100% a priori error for habit fractions

Di Natale et al. 2023, Atm. Meas. and Techniq.

Gianluca Di Natale

Results

Vector of not retrieved parameters:

 $\mathbf{b} = (\mathbf{W}\mathbf{V}, \mathbf{T}, \varepsilon_{\rm s}, T_{\rm s}, {\rm CBH}, {\rm CTH})$

... and the associated variance-covariance matrix (VCM) \mathbf{S}_b used to derive the final radiance VCM:

$$\mathbf{S}_{f} = \mathbf{K}_{b} \mathbf{S}_{b} \mathbf{K}_{b}^{T}$$

... and the final measurement VCM \mathbf{S}_{v} ':

$$\mathbf{S}_{y} = \mathbf{S}_{y} + \mathbf{S}_{z}$$

... and the VCM on the retrieved **p**: $\mathbf{S}_{p} = \mathbf{K}_{pq}^{T} (\mathbf{K}_{q}^{T} \mathbf{S}_{y}^{-1} \mathbf{K}_{q} + \mathbf{S}_{aq}^{-1}) \mathbf{K}_{pq}$

> Spectroscopy and Photonics for Environmental Research and Earth Studies Group

Gianluca Di Natale

Results

Regarding the effective diameters and optical depths

Overall, normalized $\chi^2_{\ \rm N}\,$ lower than 1.1 are found

Di Natale et al. 2023, in discussion on Atm. Meas. and Techniq.

Gianluca Di Natale

Results (fluxes)

Impact of the habit assumption on the fluxes calculation at TOA

Di Natale et al. 2023, in discussion on Atm. Meas. and Techniq.

Gianluca Di Natale

Antarctic dataset for validation

1 45° 200 200 ette 😨 READER & PAR 8 38 3- 2 デモアンダーは ちょう とうかうてんし かっち To the state of the second of the second sec and a light of the 2 will we The to be the second of all and with the other & the two to be hard a too high a star a star was a star a And where it with he wided shares. It is shown and shares that when the property property is the set of the

- Top (im) a.g.) 19/11/18 -raw sign

Summary

Cirrus clouds are composed of a myriad of crystal habits which affect radiance spectrum.

A new approach to retrieve crystal habits developed for FORUM observations

Results on the syntethic spectra are very promising !

We need to validate the method for instance by using spectra provided by the REFIR-PAD spectroradiometer in Antarctica

Gianluca Di Natale

•Thank you!!

