

# Fram Strait Sea Ice Thickness from ICESat-2 and CryoSat-2 Freeboards

#### Christopher J. Picard and Waleed Abdalati

Cooperative Institute for Research in Environmental Science

Department of Geography, University of Colorado Boulder



### Sea ice thickness estimates limited by uncertainties in snow depth

Overestimating snow depths can inflate SIT values

SIT with satellite-derived snow depth ( $\Delta f_s$ ) are smaller than with climatological snow depth (mW99)



Data and Methods

Freeboards

Snow depth

Sea ice thickness

Conclusions







### **Research Objectives**

**Short term:** Constrain wintertime sea ice thickness estimates through the Fram Strait by estimating snow depth from ICESat-2 and CryoSat-2 altimeters.

**Long term:** Understand the volume of sea ice and freshwater being transported from the Arctic to the Subpolar North Atlantic.

Background

Freeboards

Snow depth

Sea ice thickness

Conclusions











#### Data

| Field                      | Data                             | Reference                |
|----------------------------|----------------------------------|--------------------------|
| Lidar freeboards*          | ICESat-2 ATL10, V6               | Kwok et al. (2023)       |
| Radar freeboards*          | CryoSat-2 L2E                    | European Space Agency    |
| Snow density               | MOSAiC Snow Density              | Macfarlane et al. (2022) |
| Sea ice age (FYI vs. MYI)  | OSI SAF Sea Ice Type             | EUMETSAT; OSI SAF        |
| Monthly NESOSIM snow depth | IS2SITMOGR4; NESOSIM             | Petty et al. (2023)      |
| Snow depth                 | Modified Warren Snow Climatology | Warren et al. (1999)     |

\*Near-coincident IS2/CS2 observations from <u>cs2eo.org</u>

Background

Freeboards

Snow depth



### Sea ice thickness derived from laser and radar altimetry

Radar: 
$$h_i(h_{fi}, h_{fs}) = \left(\frac{\rho_w}{\rho_w - \rho_i}\right) h_{fi} + \left(\frac{\rho_s}{\rho_w - \rho_i}\right) h_{fs}$$

Laser: 
$$h_i(h_f, h_{fs}) = \left(\frac{\rho_w}{\rho_w - \rho_i}\right) h_f + \left(\frac{\rho_s - \rho_w}{\rho_w - \rho_i}\right) h_{fs}$$

#### Variables

Ba

 $h_i \rightarrow \text{sea} \text{ ice thickness}$  $\rho_{\rm w} \rightarrow$  density of water  $\rho_i \rightarrow density of ice$  $\rho_s \rightarrow \text{density of snow}$ 

 $h_{fs} \rightarrow$  snow depth  $h_f \rightarrow$  total freeboard  $h_{fi} \rightarrow$  ice-only freeboard

| ackground | Data and Methods | Freeboards | Snow depth | Sea ice thickness | Conclusior |
|-----------|------------------|------------|------------|-------------------|------------|



# Sea ice thickness derived from laser and radar altimetry

Radar: 
$$h_i(h_{fi}, h_{fs}) = \left(\frac{\rho_w}{\rho_w - \rho_i}\right) h_{fi} + \left(\frac{\rho_s}{\rho_w - \rho_i}\right) h_{fs}$$

Laser: 
$$h_i(h_f, h_{fs}) = \left(\frac{\rho_w}{\rho_w - \rho_i}\right)h_f + \left(\frac{\rho_{s-}\rho_w}{\rho_w - \rho_i}\right)h_{fs}$$

#### Variables

 $\begin{array}{ll} h_i \neq \text{sea ice thickness} \\ \rho_w \neq \text{density of water} \\ \rho_i \neq \text{density of ice} \\ \rho_s \neq \text{density of snow} \end{array} \qquad \begin{array}{ll} h_{fs} \neq \text{snow} \\ h_f \neq \text{total} \\ h_{fi} \neq \text{ice-centric} \end{array}$ 

 $h_{fs} \rightarrow \text{snow depth}$  $h_f \rightarrow \text{total freeboard}$  $h_{fi} \rightarrow \text{ice-only freeboard}$ 

| Background | Data and Methods | Freeboards | Snow depth | Sea ice thickness | Conclusions |
|------------|------------------|------------|------------|-------------------|-------------|



### Freeboard comparison

Total freeboard larger than ice-only freeboard

Both show similar seasonal growth

Mean and standard deviation of all observations:

Total freeboard = 0.36m, 0.10m Ice-only freeboard = 0.22m, 0.07m



Background

Data and Methods

Freeboards

Snow depth



### Freeboard distribution by ice age



Background

Data and Methods

Freeboards

Snow depth

Sea ice thickness

Conclusions



# Snow depth: freeboard-derived, climatological, and modeled

Freeboard-derived snow depths smaller than climatological and modeled snow depths

Mean and standard deviation of all observations:  $\Delta f_s = 0.14m, 0.08m$ mW99 = 0.25m, 0.06m NESOSIM = 0.27m, 0.10m



Data and Methods

Freeboards

Snow depth



#### Snow depths by sea ice age



Background

Data and Methods

Freeboards

Snow depth

<u>epth</u> Se

Sea ice thickness Conclusions

#### esa

Conclusions

# Sea ice thickness comparison

Mean SIT calculated with mW99 and NESOSIM are 7.1% and 21.2% larger, respectively, than SIT calculated with  $\Delta f_s$ 

Data and Methods

**Freeboards** 

Snow depth

Background

a) CryoSat-2 &  $\Delta f_s$ Modal Peak: 1.98 m All: 2.01 m FYI: 1.88 m 0.6 MYI: 2.05 m 0.4 0.2 0.0 b) CryoSat-2 & mW99 Modal Peak: 2.12 m All: 2.25 m FYI: 1.90 m Kernal Density MYI: 2.33 m 0.0 c) CryoSat-2 & NESOSIM Modal Peak: 2.40 m All: 2.31 m FYI: 2.28 m 0.6 MYI: 2.32 m 0.4 0.2 0.0 1 2 3 0 5 SIT (m)

Sea ice thickness

Sea Ice Thickness Distributions (2019-2024)



Conclusions

#### Mean seasonal evolution of SIT



Background

Data and Methods

Freeboards



### **Conclusions and Future Work**

- Mean Fram Strait total freeboard, snow depth, and SIT over 2019-2024 are 0.36m, 0.14m, and 2.01m, respectively
- Freeboard-derived snow depths are lower than mW99 and NESOSIM
- The age-thickness relationship observed in the Arctic holds in the Fram Strait
- Future work includes:
  - Comparison with ULS thickness data, once available
  - Examining interannual variability of SIT and its causes
  - Calculating sea ice volume (SIV) flux through the Fram Strait
  - Estimating freshwater transport with SIV estimates

Snow depth