

SWARM CONSTELLATION ORBITAL EVOLUTION UNDER SCIENTIFIC AND OPERATIONAL CONTRAINTS

MISSION ARCHITECTURE

ORBITAL EVOLUTION

Swarm mission consists of 3 identical satellites in Low Earth Orbit

• A and C operate at lower altitude

B operates at higher altitude and at a different local time

Initial inclination of each satellite: Swarm-A 87.35 deg Swarm-B **87.75 deg** Swarm-C 87.35 deg

Initial delta-LTAN between A and C: 0.094h / 1.4deg

Altitude and Local Time are not frozen:

the 3 satellites are decaying freely under the effect of the atmospheric drag. Local Time is drifting due to non spherical gravitational field

HOW ORBITS HELP SCIENCE

In order to achieve its scientific objectives, Swarm needs variability in space and time!

Keep variable LTAN separation between Swarm-B and lower pair

Keep altitude separation between Swarm-B and A/C bounded

Keep along track separation between 4 and 10 seconds

CHANGING ORBITS TO MAXIMISE SCIENTIFIC RETURN

Trajectory adjustments are required to meet specific requirements:

Exploit counter rotating orbits configuration

Be at lower altitude at next solar minimum

Keep Swarm mission until next solar minimum

October 2019

2021

August

2023

Inclination change #1

- Introduce **15 mdeg inclination difference** between Swarm-A and C to start a Local Time drift
- Usage of **Y thrusters** (more convenient as it does not imply slews)

- . Swarm-B: 3 (test) burns
- Swarm-A: 2 (test) + 16 burns
- Swarm-C: 2 (test) + 9 burns

3 phases:

[4s,10s

Inclination change #2

- inclination difference between A and C is back to 0 deg
- Current LTAN difference: -1.4 deg / -0.094 h The Local Time drift has stopped

Swarm-A needed touch-up manoeuvres:

- . Reach Swarm-C altitude
- . Adjust eccentricity difference
- Constellation back inside the [4s—10s] boundaries

Semi major axis [km

May/July

2022

April/

June

2023

September

October

It was needed to avoid reentry before 2030

Same concept as in 2022

- 2 test manoeuvres
- [A-C-A-C] sequence followed by [C-A-C-A] sequence
- Touch-up manoeuvres on Swarm-A

CONCLUSIONS AND OUTLOOK

With current fuel levels, assuming a consumption rate of 1 kg/year for attitude control and CAMs, the lower pair of Swarm satellites should be able to maintain operation until the next solar minimum in 2031, barring a significant increase in solar activity. Due to limited fuel, no further adjustments to the altitude of Swarm-A/C will be possible. The inclination difference between Swarm-A and C has been reduced to 0 deg, stabilizing the RAAN difference at 1.4 degrees. Whether further adjustment is needed before the next solar minimum is still under discussion. Swarm-B's altitude has been raised 32 km above the lower pair. However, due to differential decay, the spread in altitude will increase over time. The orbital plane of Swarm-B is drifting in relation to Swarm-A/C, with the orbital planes expected to be perpendicular in 2025/2026 and coplanar in 2029/2030. Given the remaining fuel on board of Swarm-B, it is possible to slow down the drift to achieve coplanar orbital planes by 2031