

Magneto-Coriolis waves in Earth's core

N. Gillet¹, F. Gerick², D. Jault¹, J. Aubert³, T. Schwaiger¹, M. Istas¹, F. Dall'Asta¹, P.-O. Amblard⁴

EAR ANNIVERSARY

SWARM

ESA project « Swarm + 4D Deep Earth: Core »

¹ ISTerre Grenoble, ² CNES Toulouse, ³ IPG Paris, ⁴ Gipsa-Lab Grenoble

Swarm 10 Year Anniversary & Science Conference 2024

advection (or convection) time in Earth's core

from the intensities of the field $|B| \sim 40 \mu T$ and of its rate of change $|\partial_t B| \sim 200 \text{ nT/yr}$

ightarrow advection time

$$au_{m{U}} = |B|/|\partial_t B| \sim$$
 200 yrs

 \rightarrow flow velocity

 $Upprox L/ au_U\sim$ 10 km/yr

magnitude similar to the westward drift

e.g. Bullard et al. 1950; Finlay & Jackson 2003

evolution of the magnetic equator

Thomson 1989

Alfvén (or magnetic) time in Earth's core

- torsional Alfvén waves of period 6-yr detected from observatory data
- tiny magnetic signal (\sim 2 nT/yr)

• Alfvén speed

 $V_{A}=|\mathsf{B}|/\sqrt{
ho\mu}\sim$ 1000 km/yr $\gg U$

 \Rightarrow magnetic time

$$au_{\mathsf{A}} = \mathsf{L}/V_{\mathsf{A}} \sim 2 \; \mathrm{yrs} \ll au_{U}$$

... field intensity deep in the core $|{\rm B}| pprox 5~{
m mT} \sim 10 |B_{CMB}|$

1999-now: 25 yr of monitoring from space

 Oersted, CHAMP, CryoSat-2 & Swarm

(Hammer et al. 2021)

- ullet interannual signal \sim 10 nT/yr
- which source ?
- must be non-zonal (Gillet et al. 2015; Kloss & Finlay 2019)

(미) 《문) 《문) 《문) 문 의 의 (4/14

waves and advanced numerical geodynamo simulations

What of Marine M

simulated jerks related to axially invariant (or quasi-geostrophic, QG) hydro-magnetic waves

Aubert & Finlay 2019; Aubert & Gillet 2021; Aubert et al. 2022

see Talk by O. Barrois

pygeodyn: a geomagnetic data assimilation tool

Huder et al. 2019; Gillet et al. 2019; Istas et al. 2023

- augmented state ensemble Kalman filter
- stochastic model anchored to geodynamo spatio-temporal statistics
- assimilate either Gauss coefficient data, virtual and ground-based observatory series, or local core surface estimates see Poster by H. Rogers

https://geodyn.univ-grenoble-alpes.fr/

discovery of QG MC waves from satellite data

- propagation speed
 - westward: $C_\phi \sim V_A \gg U \sim$ 5 km/yr
 - outward: $V_A > C_s \sim 200 \; {\rm km/yr} \gg U$

PNAS

ARTICLE EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES

Satellite magnetic data reveal interannual waves in Earth's core

Nicolan Giller¹⁴ (a), Ferlix Gerlio¹ (b), Dominique Jault¹ (b), Tobias Schwager⁴ (b), Julien Auben¹¹, and Machieu Istat⁴ Edited by Peter Obian, The University of New Mexico, Albuquerque, NM: received August 18, 2021, accested February 4, 2022

gathers numerical, theoretical and observational advances

since confirmed by Ropp & Lesur (2023), 탄i et 큵 (2024) 7/14

interannual Magneto-Coriolis (MC) modes

- MC waves very dispersive ightarrow believed undetectable at $\mathcal{T} \sim au_{\mathcal{A}}$ (Hide, 1966)
- refuted for eigenmodes with low k_{ϕ} , large k_s (Gerick et al. 2021)

see Talk by F. Gerick

- ightarrow equatorial window: $\ell_{ heta}\gtrsim 10\ell_s$
- ightarrow carried by the background B_s
 - dispersion relation $\omega = rac{V_A^2 k_s^4 h^2}{2 k_\phi \Omega}$

$$V_A^2(s,\phi)=rac{1}{2h
ho\mu}\int_{-h}^{h}B_s^2(s,\phi,z)dz$$

(Gillet et al. 2022)

synthetic validation using geodynamo simulation data

partial recovery of the flow patterns, improved:

- for larger flow magnitude
- towards longer time-scale
- with better data coverage
- for simpler geometries

Schwaiger et al. (2024)

band-pass filter flow for $\mathcal{T} \in [6-13.5] au_A$

QG MC waves & observed field changes

Ascencion Island equatorial Atlantic

from large scale flow subgrid processes + diffusion

• SV data

PSD @ Hermanus, South Africa

 \rightarrow MC waves at various periods in geophysical observations?

interannual and decadal QG MC waves in Earth's core Gillet et al. (submitted)

improved understanding of the magnetic signal

- QG MC waves: a natural explanation to transient field changes
- confidence gained from the confrontation of observations and numerical simulations

NanoMagSat

Ionger times-cales:

- ... interprete historical and archeomagnetic records
- ... motivates long-lived coverage from space
- shorter interannual periods:
- ... distinguish QG MC from QG Alfvén waves
- ... improved separation of external sources with inclined orbit missions (MSS, NanoMagSat...)

see talk by Y. Jiang, poster by G. Hulot

probing the deep mantle with the core dynamics

Tronnes, 2010

• core dynamics more sensitive to the mantle conductance towards high frequencies

Firsov et al. 2023

- ... constrain iron content composition of
- (thick) large low seismic velocity provinces
- (thin) ultra-low seismic velocity zones?
- angular momentum changes: sensitivity of the core flow predictions for various conductance models

using QG MC waves to constrain geodynamical issues

courtesy of N. Schaeffer

- image the dynamo field deep in the core through $V_A(s,\phi)$
- improved base-state within the core

 deterministic description:
 magnetic field predictions?

 Aubert 2023
- geodynamical inferrences:
- mantle heterogeneities, inner core viscosity (through torques & length-of-day)
- heat flux & stratification level at the top of the core