

Outline

- Who are we
- VITO's mandate in Copernicus
- Global Land Cover mapping in private cloud
- Scaling Up to public cloud
- Conclusions

VITO Remote Sensing

Our MISSION

We make you see the bigger picture.

We take you **high-tech with low risk**.

We leverage your impact on sustainability.

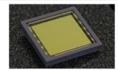
Our VISION

We go **end-to-end to give you the insights you need**. Without the hassle. We do your **science & research** to stripe off complexity and risk. We deliver top-notch **operational services and customer oriented solutions**.


VITO remote sensing

~90 FTE ~16 M€/yr

Platforms



AIRBORN

HALE UAV

SATELLITE

Sensors

Value Added Serv & Information **Products**

Markets

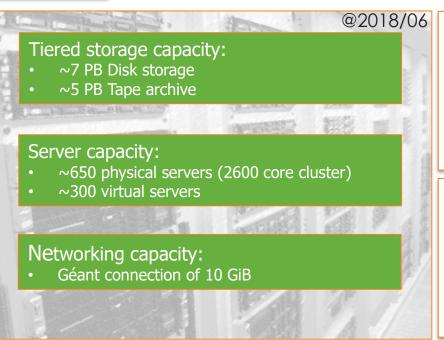
Agriculture

Landuse & **Biodiversity**

Climate

Water & Coast

Infrastructure



Security

VITO Remote Sensing Data Center

VITO MANDATE IN COPERNICUS

VITO in Copernicus

- Lead Global Land Service Operations (since 2013) (http://land.copernicus.eu/global)
- Lead Climate (C3S) Land Biosphere ECV (since 2017)
- Member of Copernicus Academy
- Member of Copernicus Relays network
- Collaborative Ground Segment for Sentinels (<u>http://www.terrascope.be</u>)

CGLOPS Product Portfolio

VEGETATION

Leaf Area Index (LAI)

Fraction of Absorbed

Photosynthetically Active Radiation (FAPAR)

Fraction of vegetation cover (FCOVER)

Normalized Difference Vegetation Index (NDVI)

Vegetation Condition Index

Vegetation Productivity Index

Dry Matter Productivity

Burnt Area Greenness Evolution Index

Phenology metrics

Moderate Yearly Land Cover

ENERGY

Top-of-Canopy reflectance

Surface Albedo

Land Surface Temperature

Radiation Fluxes Evapotranspiration

Active Fires

Surface soil moisture Soil Water Index

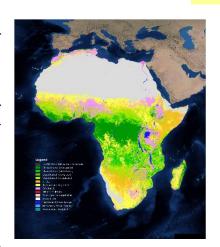
WATER

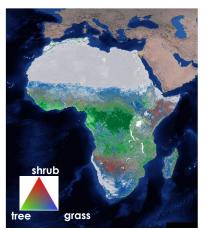
Water Bodies

Coastal Erosion

Lake surface water temperature Lake and river water level* Lake surface reflectance Lake turbidity Lake trophic state

* non-gridded product


CRYOSPHERE



Lake Ice Extent Snow cover extent Snow water equivalent

remotesensing.vito.be

Copernicus Dynamic Global Land Cover Map

Dynamic Global Land Cover Map

A systematic SERVICE providing a **DYNAMIC**, **YEARLY**,

USER- ORIENTED at GLOBAL scale

@ 100m resolution from 2015 onwards

Complementary to Pan-European, with less thematic details

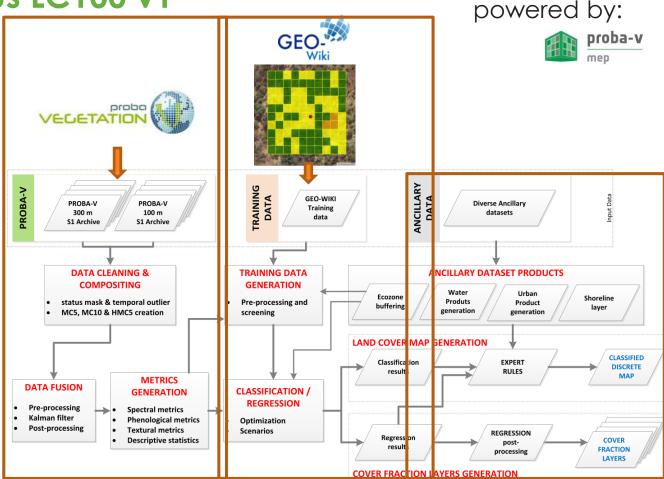
Available collections

Algorithm version	Spatial	Temporal	Sensor
1	Africa	2015	PROBA-V
2*	Global	2015 - present	PROBA-V, Sentinel-2

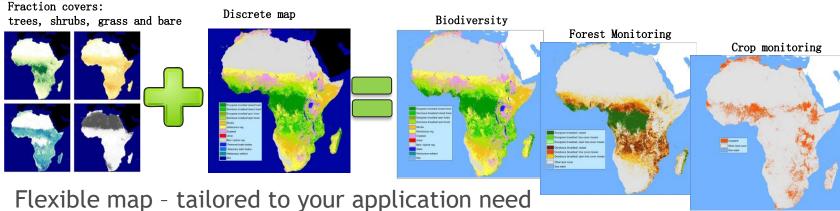
(*) under preparation, expected release 2019

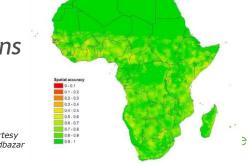
Contributors

- » Marcel BUCHHORN, Luc BERTELS, Ruben VAN DE KERCHOVE, Bruno SMETS
- » Martin HEROLD, Nandika TSENDBAZAR, Jan VERBESSELT, Dainius MASILIUNAS
- » Steffen FRITZ, Myroslava LESIV, Martina DUERAUER



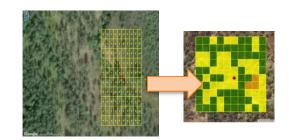
Copernicus LC100 v1


- » Pre-processing
 - » Data cleaning & fusion
 - » Generation of TS metrics
- » Classifier/Regressor
 - » RF optimized, 5 folded CV
 - » 400 metrics, best band selection per 'eco'-zone
 - » 25K training points
 - » 5 results + 4 fraction maps
- » Expert Rules
 - » Decision tree
 - » Incorporate areas of agreement from GLC maps
 - » Imprint JRC GSW/GHSL, DLR GSL (GUF+)

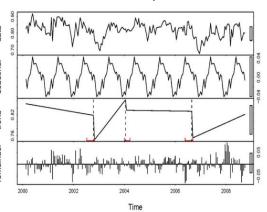


Copernicus LC100 v1

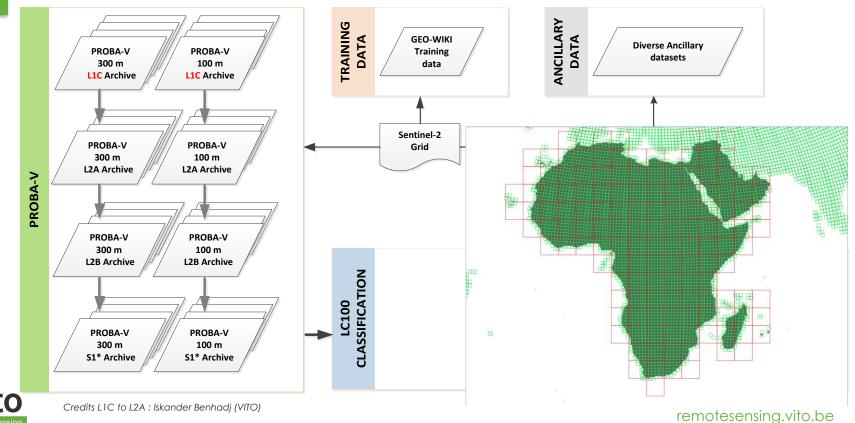
- » Flexible map tailored to your application need https://blog.vito.be/remotesensing/lcm-tailored-to-your-needs
 - » No 'fixed' mixed classes
 - » Continuous cover fractions
- » CEOS-LPV 'independent' validated, incl. spatial distributions
 - » Overall accuracy: 72.3% +/- 1.8% to 80.4% +/- 1.1%
 - » MAE and RMSE: 6% to 14% on cover fractions



COPERNICUS LAND COVER MAPPING IN PRIVATE CLOUD

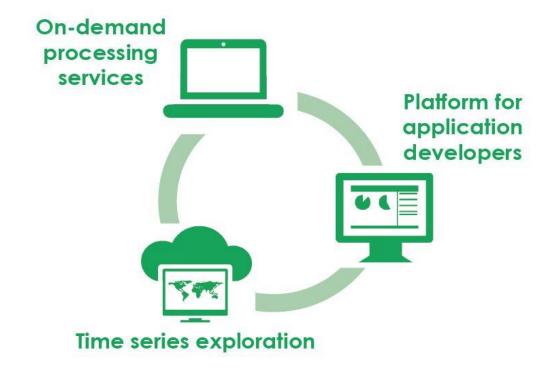


Copernicus LC100


- For V1 of the Africa product
 - Fully automated workflow, with ~20K training points over Africa continent
- For V2 of the Global product -> less geometric distortion & better interoperability Landsat and Sentinel-2
 - Generation of PROBA-V UTM 100m ARD
 - Training data and validation data was also switched to UTM (120K human qualitative training points with 10x10 box of 10m resolution)
- For V2 we integrate change detection
 - BFAST method for detecting and characterizing change within time series
 - NAUC indicator on stability of pixels

PROBA-V UTM ARD for LC100 V2

PROBA-V to UTM


- geometric correction including pixel alignment to the Sentinel-2 grid
- cloud and cloud shadow detection PLUS snow/ice detection (using additional ancillary data) – NEW: temporal cloud detection
- Improved atmospheric correction using CAMS NRT data for AOD550, O3, and TCWV
- image compositing to generate time series stacks plus image clipping to the Sentinel-2 tiling grid (resolving issues in overlapping areas)
- generation of final status masks improved to usable data mask
- gap-filling in the time series of a pixel via a Kalman-filter approach which uses the PROBA-V 300m corresponding side cameras information, compositing to 5-daily observations

A node in a federation of platforms

Develop

Operate

Support users

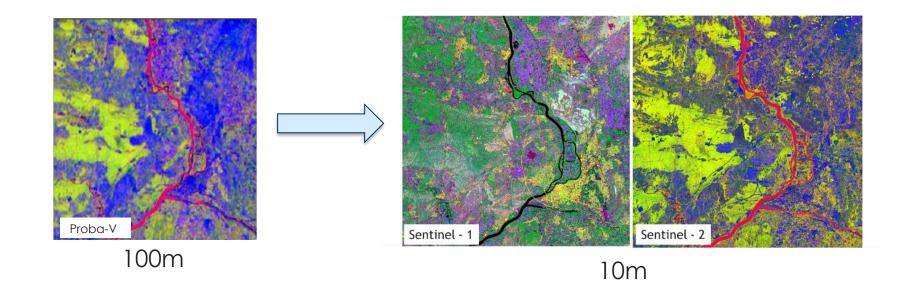
MEP Software Stack Application Operational Jupyter .___ **User Defined** Virtual Research Dashboards Notebooks workflow workflow **Environment** kibana **Cloud Processing Middleware** & kafka PostGIS/ Mirantis Spark2 Airflow elasticSearch Openstack 📮 Spark DASK Resource Manager **HDFS User Data** Yarn <u>@</u> **KVM Geodes** (Phadoop ceph Hortonworks nfrastructure CentOS7 CentOS7 NetApp puppet **Computing Nodes** Storage Nodes Hewlett Packard Enterprise CentOS docker icinga

PROBA-V to UTM

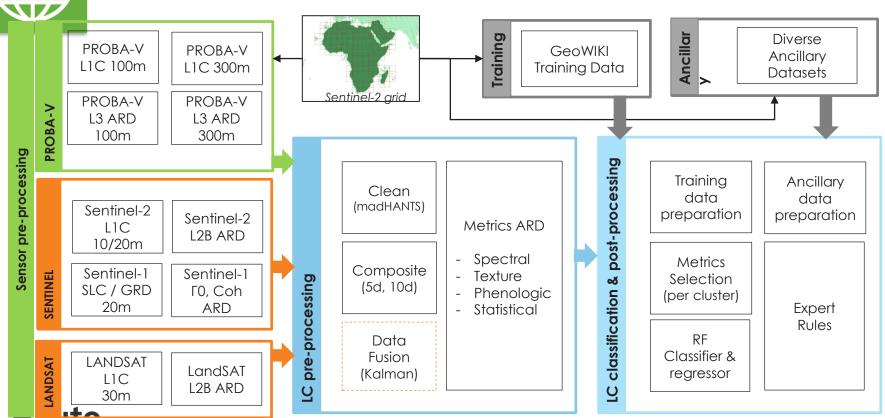
- Over 50 million single acquisitions were processed to generate a global PROBA-V ARD at 100m resolution spanning over 5 years ... in 2 weeks using less 30% of resources
- Fully aligned to the Sentinel-2 tiling grid and naming
- Additional metadata are injected to enable a SpatioTemporal Asset Catalog (STAC), based on an ElasticSearch database to allow easy search through json
- Geotrellis based backend, allowing on the fly extraction of timeseries cubes for specified areas or whole tiles – used in OpenEO

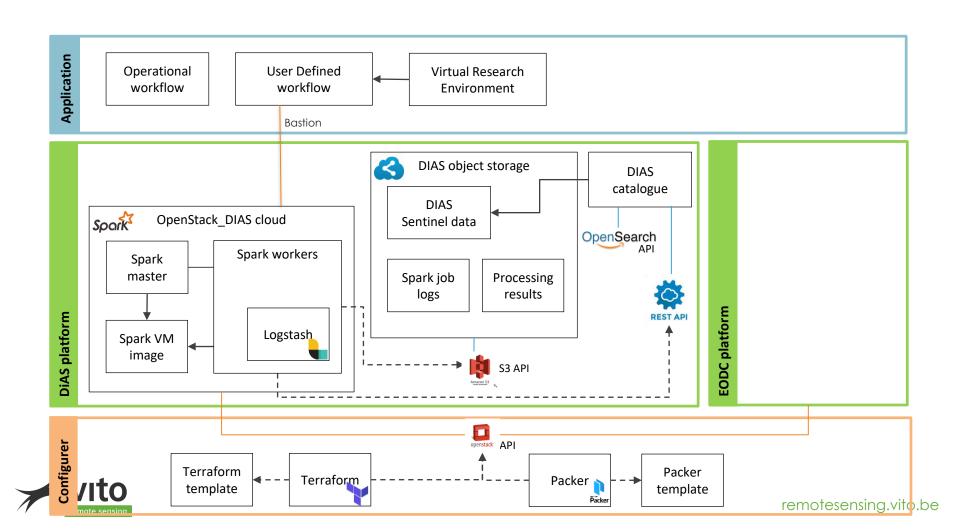
LC100 Classification

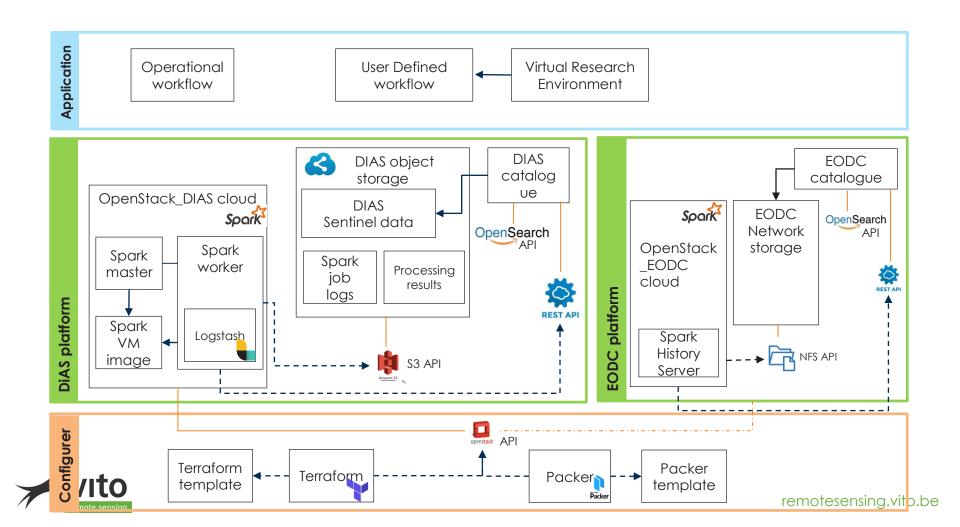
- Implemented in 15 python modules
- 3 years data in 'base' mode
- 270 metrics per tile
- 18962 tiles:
 - 5 folded CV
 - 6 classifiers + 7 regressors (+urban, water, crop)
- Up till now 31 continental runs performed
- Using 500 executors, within 1GB memory
 - Data preparation takes 2-3 days
 - Classification < 1 day



SCALING UP TO PUBLIC CLOUD


Continuity & Higher spatial resolution





Sensor agnostic (fusion), re-use LC workflow

CLOSING

Where are we?

- Full automated Land Cover workflow
 - User-customization in classes possible through 4->7 covers
 - Include Spatial accuracy maps (& Change maps)
 - Large 10m database of high quality training (&validation) points
 - Sensor agnostic
 - Global on PROBA-V UTM
 - AOI on Sentinel & Landsat
- Highly optimized workflow in Spark
 - Stable in private cloud environment
 - Infrastructure agnostic (Spark standalone)
 - Tests in public cloud environment ongoing

Next steps

- LC100 v2 (Global 2015 + Africa change)
 - Release at Living Planet Symposium

- +7 Cover Fractions
- + Data Density Indicator
- + Spatial Accuracy Map

- LC100 v3
 - Global Sentinel (1+2)
 - Explore/integrate new AI/ML techniques (reCNN)

Bruno Smets

R&D Project Manger Land Use

VITO NV

Remote Sensing | Vegetation Boeretang 200 | 2400 Mol | Belgium

T. +32 14 33 68 39

remotesensing.vito.be | blog.vito.be/remotesensing | WVITO RS

THANK YOU

remotesensing.vito.be

