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Context and objectives
• ALTIUS level 2 processor is well advanced for ozone retrievals.

• it is based on standard methods
• heavy hardware constraints : f.i. no GPU allowed -> no “direct chain” possible 

with our Radiative Transfer Model (RTM)
• proxies and look-up tables and “L-M” algos
• many instrumental side effects are possible and difficult to manage: straylight, 

convolutions,..etc

• Objective:  to explore “direct methods” = combining two powerful numerical 
weapons
• use of orthogonal function bases given by Principal Component Analysis (PCA) 
• nonlinear regression by Machine Learning (ML)



Inverse problems

• Probably the most frequent problems in experimental physics: the 
retrieved quantity results from one or several integrations of an 
unknown distribution

• Huge amount of references and methods: Bayesian optimal 
estimation, Philips-Twomey-Tikhonov regularization, constrained non-
linear LS (L-M) for L2, L1,..norms, linear and log (Chahine) relaxation 
methods, Backus-Gilbert, Maximum Entropy Methods, ..etc



Inverse problem:
measure “y” , then compute ‘x’



Trying direct inverse methods...

• WHEN a large number of observations has to be processed, the TOTAL 
computational cost may be considered. How many calls to the forward model ?

• Non-linearities in retrieval imply iterative schemes.

• f.i. in ALTIUS, resolution is driving the number of forward model calls 
by the L-M algorithm.

• even worse: all intermediate computations along the minimization 
path, including Jacobians, are lost.

• A large “training” set (LTS) is affordable at an equivalent computing  load. 
Hereafter, “large” means 25 600 synthetic simulations by our Monte-Carlo 
radiative transfer code “SmartG” 

-> 2 weeks / 2 Tera photons shot / 0,3 % precision



Direct inversion ?
• Generate a LTS
• Just swap green and blue boxes. 
• Replace the forward model by a black box. 
• For LTS, force the black box to predict the green box

from the blue box.



Focus on solar limb scattering geometry

Simplified atmosphere:
air + ozone + stratospheric 
aerosols + effective albedo + 
solar irradiance @ z=0:1:100 
km



Stokes vector profiles
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ONNI: Ozone Neural Network Inversion

Key concept 1: what is the information content of a radiance profile ? -> LTS PCA !!!

limited to unpolarized instrument for the time being



Ch / λ [nm] # PC

1 / 300 8

2 / 315 9

3 / 351 9

4 / 525 14

5 / 600 18

6 / 675 19

7 / 745 20

8 / 1020 21

@ 0.3 % accuracy level

Information content is
reduced from 8*61=488 
to 118



Define NRV 
(Normalized Radiance 

Vector)
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Ch / λ [nm] # PC

1 / 300 8

2 / 315 9

3 / 351 9

4 / 525 14

5 / 600 18

6 / 675 19

7 / 745 20

8 / 1020 21

Key concept 2 : build an reverse mapping (118+2)  NRV to ozone vmr profile (61)

length(RV)=
91+2=93

if all (8) channels
are considered



How to map a large measurement vector of onto another large 
state vector by a nonlinear transformation ? 

No LUT !  → Use an Artificial Neural Network



Key concept 3 : reverse mapping by a shallow « deep » neural network

ANN topology is:  120 x 61 x 61 x 61
case subsets: training= 70 % / convergence= 15% / test=15 %
algo= Scaled Conjugated Gradients



Mostly a fair agreement .. with a few hallucinations

Validation wrt full data set (25 600 cases)



The Magic of radiance 

PCA !

1. it tells you the information 
content of your observation.

2. it is a powerful (and natural) 
denoising filter→ no need to 
regularize the inversion process.

Fourier power 
spectrum



Check robustness against noise.
e.g.  ALTIUS requirements=[5 %, 20 %] in the 15-45 km range



ONNI applied to  OMPS data

• target is March 2016 (31 x 15 x 140 potential observations)
• processing of RAW L1 data.  No instrumental functions, no cloud 

detection, no TGH correction, no straylight, no extensive error 
budget,..etc

• objective: to show that ONNI gives “reasonable” (or even “good”) 
results when applied to a real case with respect to other methods. Fine 
tuning is possible but out of scope.

• Two competitors:
• NASA v2.6 (Kramarova et al. [2018])
• BREMEN (Arosio et al. [2018])



1020 nm OMPS channel is contaminated → ONNI 
was recomputed for 7 channels

8 ch

7 ch



Intercomparison in tropical band (as Arosio et al)

Nice but ONNI has a 
larger dispersion 
(more wavy profiles). 
Why ?



CLOUDS !

LTS domain



ONNI error computed with full Monte-Carlo simulations using logRad residuals



Profile representation by PCA 
defines the user-defined vertical 
resolution.  It should match the 
experimental SNR level.



Summary of “Direct inversion methods” 
(potentially for all applications)

PRO
• main computing load moved to synthetic LTS generation.
• LTS allows for PCA analysis in measurement space and information compressing.
• orthogonality of PCA -> increase resolution up to the SNR. 
• reverse mapping “measurement vector to state vector” is a nonlinear regression where ANN

are considered  to be superior to any method.
• trained ANN are extremely cheap: use brute force to derive error budgets and observation 

kernels
• self-denoising: no regularization needed

CON
• A change in the forward model triggers a re-generation of the LTS (except if these changes 

are parameterized and perturbative)
• ANN topology ? heuristic, no clear rules, trial and error. Number of neurons, hidden layers, 

activation functions. Optimal topology may depend on the solution...
• so far, nobody understands what happens inside the box ? 



Spare slides



Some open questions:

• investigate hallucinations ( 2-3 % of cases)
• is full PCA (spatial+spectral) better to avoid spectral non-orthogonality ?
• instrumental parameters

• direct parameterization to append to the measurement vector
• LTS update from a subset and training from unperturbed ANN

• parallelization of L-M algorithm (Python ?)
• optimal LTS generation: which minimal training set of state vectors must be generated to 

represent the measurement space (GAN ? variational autoencoders ? )
• ...



Reminder about PCA
Start from a climatology → compute the covariance matrix of the vertical profiles → SVD → use the 
eigenvectors  as “principal components”



RTM Spectral 
range

normalization regularization Albedo, aerosols etc CS Algo

NASA GSLS 1 triplet @ 
600 nm
[549-633 
nm] for 
12.5-35.5 
km
3 doublets 
[302,312,32
2]/355 for 
28.5-50.5 
km

UV: 55.5 km
VIS: 40.5 km

Covariance 
matrix (McP-
Labow)

Albedo retrieved at 675 nm
Retrieve ozone 1 km above 
cloud height (color method)
Aerosol: independent retrieval 
(Loughman, [2017])

Bass &Paur Opt.Estimation

BREMEN SCIATRAN 285-302 nm
305-313
322-331
508-660

63.5 km
52.5
47.5
42.5
Log(y/y*)-Pn

1st order 
Tikhonov

Albedo: simul retrieval
Reject TH’s below threshold 
(color method)
Aerosol: extinction at 869 nm 
+ frozen log-norm and Mie

Serdyuchen
ko

Opt.Estimation

ONNI SMART-G 300,315,35
1,525,600,6
75,745,(102
0) nm

z= 40 km PCA low-pass 
filter on logRad

NNI integrates the ozone 
signature wrt NRV

Serdyuchen
ko

Direct NNI



screened for “cloudy” events all events 



Stochastic error budget

Measurement noise is estimated  
from PCA residuals (same 
approach as Arosio et al. using 
inversion residuals)

The noise amplitude is altitude 
and wavelength dependent. 

theoretical limit=0,3%



Summary  of ONNI (specific to limb scattering)

• logRadiance PCA representation coupled with a NN 
reverse mapping is an efficient inversion method for ozone 
retrieval

• self-consistency and robustness have been verified
• no regularization. The PCA is a low-pass filter consistent 

with measurement  SNR
• error budget and AK’s are cheap to compute, even with full 

Monte-Carlo simulations.
• A raw application of ONNI to OMPS data shows fair inter-

comparison with NASA and BREMEN algos


