

NASA's SAR/Geodetic Imaging Program

Dr. Gerald Bawden

Program Scientist Geodetic Imaging NISAR/SDC/UAVSAR/OPERA/ASF NASA Headquarters

Second Workshop on International Coordination for Spaceborne Synthetic Aperture Radar

28-30 September 2022

ESRIN: Frascati, Italy

NASA's Earth Observing SAR-InSAR-Geodetic Imaging Program Overview

And Change

- All payload electrical & mechanical integration is complete; dynamic testing is underway
- Mission Scenario Tests in April demonstrated end-to-end system functional performance
- 3 of 4 NISAR Ka-band ground stations are operational, 4th will be operational by end of year
- Next Steps:
 - Aug 2022 Jan 2023: Thermal/Vacuum Testing
 - Jan 2023 Feb 2023: Pack and ship from JPL to India
 - Mar 2023 Dec 2023: Integrate with spacecraft
- January 29, 2024: Launch Window Opens
 - 16 months + 1 day

NISAR Observation Summary

NISAR Characteristic:	Would Enable:				
L-band (24 cm wavelength)	Low temporal decorrelation and foliage penetration				
S-band (9.4 cm wavelength)	Sensitivity to light vegetation				
SweepSAR technique with Imaging Swath > 240 km	Global data collection				
Polarimetry (Single/Dual/Quad)	Surface characterization and biomass estimation				
12-day exact repeat	Rapid Sampling				
3 – 10 meters mode-dependent SAR resolution	Small-scale observations				
3 yrs (NASA) / 5 yrs (ISRO) science operations	Time-series analysis				
Pointing control < 273 arcseconds	Deformation interferometry				
Orbit control < 500 meters	Deformation interferometry				
> 10% (S) / 50% (L) observation duty cycle	Complete land/ice coverage				
Left-only pointing (Left/Right capability)	Uninterrupted time-series Rely on Sentinel-1 for Arctic				

NISAR Mission Hardware Close integration between ISRO and NASA

NASA Provides	ISRO Provides
 L-band SAR Shared P/L structure & 12m reflector and boom 	S-band SARS-SAR baseband data handling (BDH)
 Engineering payload GPS, Power & Pyro Payload Data System with 12 Tb recorder NEN-compatible high rate Ka-band system 	 Spacecraft Bus (I3K) ISRO-compatible high rate Ka-band system Observatory I&T GSLV Launch Vehicle
Integrated radar observation planning and operations	Spacecraft operations (command uplink, telemetry and tracking)
L-SAR data downlink to NEN Ka-band stations	S-SAR, select L-SAR data downlink to ISRO stations
L-band science data processing and distribution	S-band science data processing and distribution
NASA Science Team	ISRO Science Team

NISAR Mission Operations Close integration between ISRO and NASA

Dec2017 pre-CDR Baseline

Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Current Observation Plan Revised every 6 months

- For right-looking mission, NISAR covers up to 87.5 N and 77.5 S
- For left-looking mission, NISAR covers up to 77.5 N and 87.5 S

Arctic Sea Ice coverage much reduced for leftlooking mission

North Greenland coverage is reduced for left-looking mission

Antarctica coverage is greatly increased for left-looking mission

ESA Sentinel-1 C-band radar will mitigate Arctic coverage loss

NISAR Level 0, 1, & 2 Product Overview

NISAR L2 SAR Products

NISAR Science Data Analysis and Archive Approach

- Ingest 35 Tbits (4.4 TB) of raw data per day on average
- Automatically generate L-SAR LOa, LOb, L1, and L2 science products (> 70TB/day)
 - Generate S-SAR LO science product for data downlinked through NASA Ka-band
- Perform bulk reprocessing twice during mission
 - 8 months of data after L2 product validation at 4x rate
 - 12 months of data at end of mission at 3x rate
 - Anticipate assessing additional processing / reprocessing options before launch
- Sample products derived from UAVSAR data, processed like NISAR, are available
 - https://uavsar.jpl.nasa.gov/science/documents/nisar-sample-products.html
- Open source (github) ISCE3 software already available, support these workflows and products

NISAR Cal/Val Overview

Instrument

- Image calibration schedule during service 'commissioning' phase and the first 5 months of operation
- Corner Reflector Sites in Oklahoma, Alaska, & India
- UAVSAR phase calibration

Science Cal/Val

- Each Science Disciplin developed a Cal/Val plan for their Level 3,4 validation activities.
- Ecosystems: there are >100 Cal/Val sites globally and include collaborations with ISRO, NASA ABoVE, NSF NEON, University of Oklahoma, Alaska Satellite Facility, UNAVCO, NSF GAGE, University of Nevada Reno, JECAM, ESA Biomass, US Dept of Ag.
- Validation scientific requirements workflow will be availabe in Jupyter notebooks

Launch Window Opens January 29, 2024

Satish Dhawan Space Center, India

- Original SDC Study Timeline
- ESO: Lessons learned from NISAR will guide the SDC architecture development and selection

NISAR Launch Commissioning + 3 yrs science ops

- Original SDC Study Timeline
- ESO: Lessons learned from NISAR will guide the SDC architecture development and selection
- Final SDC selection will likely be mid-2025

- NISAR Commissioning + 3 yrs science ops
- The SDC Study Team completed the initial downselect in Spring 2022

Selected SDC Architectures - Deformation Science Perspective

Architecture	Characteristic	Continuity	Improved accuracy	Rapid repeat sampling	Level of Improvement
L1C	NISAR w/PWV inst.				From NISAR
L4A	2x NISAR w/ROSE-L				Large
L5A	NISAR via 5 Small Sats.				
L6C	ROSE-L Active Multi-Squint Co-fliers				Medium
L6E	ROSE-L Passive Multi-Squint Co-fliers				Small
L8A	Sub-Daily Repeat				
L9A	NISAR via Multi-Squint Co- fliers				NISAR-like
L12B	Multi-Baseline Helical Orbit				
L12C	Fast Revisit Low Cost per Sat.				
L18A	Multi-Squint Low Cost per Sat.				

UAVSAR NextGen Modernization Plan

Phase 1:Underway Ensure uninterrupted facility capability (P-, L-, and Ka bands) Full modernization of the backend will enable multifrequency science

Phase 2

Develop S-band hardware Develop bistatic/single pass interferometry L- and S-band for topography/vegetation structure

P-band: Blister on side of G-IV/V L band and Ka band together in a canoe mount in the belly of the aircraft Migrate operations to a newer G-IV aircraft

Develop wing-pod capabilities for long wavelength single pass

Observational Products for End-Users from Remote Sensing Analysis

A suite of new NASA products that were identified and enabled through the US Government's Satellite Needs Working Group

Global Surface Water Extent

Landsat, Sentinel-2, Sentinel-1 NISAR, SWOT

Surface Disturbance Products Landsat, Sentinel-2

North America Deformation

PSInSAR (S1, NISAR): 200 km inside Canada to Panama, AK, HI, US territories

Global RTC Sentinel-1 Products North America Coregistered SLC for Sentinel-1

Thank You

Dr. Gerald Bawden

Program Scientist/Manager NISAR/SDC/UAVSAR/OPERA/ASF

NASA Headquarters

Gerald.Bawden@NASA.gov

Backup

• Observation strategy employs a small subset of possible modes*

Observation Strategy	L-band		S-band		Culling Approach	
Science Target	Mode⁺	Resolution	Mode	Resol.	Sampling	Desc Asc
Background Land	DP HH/HV 🔓	12 m x 8 m			cull by lat	
Land Ice	SP HH 🛛 🔿	3 m x 8 m			cull by lat	\checkmark
Sea Ice Dynamics	SP VV 🕇	48 m x 8 m			s = 1 p	
Urban Areas	Ĺ_ →	6 m x 8 m			s = 1 p	\checkmark
US Hi-Res	t_⇒				s = 1 p	
Himalayas	Ĺ⇒		CP RH/RV		s = 1 p	
India Agriculture	QP ↓				s = 1 p	
India Coastal Ocean			DP HH/HV or VV/VH		s = 1 p	
Sea Ice Types	DP VV/VH				s = 3 p	

*Example – actual modes in current plan vary geographically and seasonally