

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

Rayleigh-cloudy winds

Gert-Jan Marseille - KNMI

- Motivation
 - Until recently we have not been able to produce a high quality Rayleigh-cloudy wind product
- Introduction on Rayleigh channel winds in clear air conditions Rayleigh-clear
- Procedure to retrieve high quality Rayleigh-cloudy winds
- Rayleigh-cloudy winds statistics
- Conclusions

Rayleigh winds in clear air conditions

• Rayleigh Response $RR_0 = \frac{N_A - N_B}{N_A + N_B}$

• The Rayleigh Response value is a function of temperature, pressure and the Doppler shifted frequency: $RR_0 = RR_0(T,P,\Delta f)$

Available as a 3-dimensional table

Koninkliik Nederlands

Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

aeolus

DTSC

Rayleigh winds in cloudy/aerosol conditions

• Rayleigh Response
$$RR = \frac{N_A + n_A - N_B - n_B}{N_A + n_A + N_B + n_B}$$

 RR = RR(T,P,Δυ,ρ); the scattering ratio, ρ, is a measure of Mie scattering relative to Rayleigh scattering in the atmosphere:

$$\rho = \frac{\beta_m + \beta_p}{\beta_m}$$

- This would require a 4-dimensional table
- Instead: alternative approach (next slide)

Koninkliik Nederlands

Ainisterie van Verkeer en Waterstaai

Impact of Mie return on Rayleigh Response

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaa

Make use of NWP data

$$H_{\text{NWP}}(u, v) = -u \sin(\psi) - v \cos(\psi)$$
$$v_{\text{LOS}} = H_{\text{NWP}}(u, v) \sin(\theta)$$

 $\Delta f_{\text{NWP}} = v_{\text{LOS}}/(-\lambda/2)$

 ψ is the azimuth angle ϕ is the incidence angle λ is the laser wavelength

• $HLOS_{NWP} => \Delta f_{NWP} => RR_0$ (clear air conditions)

- $\Delta RR = RR_{meas} RR_0$
- ΔRR is a combination of (i) Mie contribution, (ii) instrument noise and (iii) NWP model error
- Averaging over a long time period reduces noise and model error contribution
- ➤ What is left is Mie contribution => curve fitting

$$\Delta RR(\rho) = a \left(1 - e^{-b_0(\rho - 1)} \right)$$

aeolus

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

It turned out that parameter a is a function of the Doppler shifted frequency:

 $a = a_0 + a_1 \Delta f$

Rayleigh Response model, including Mie contribution

 $RR(P, T, f_0 + \Delta f, \rho) = RR_0(P, T, f_0 + \Delta f) + \Delta RR(\rho, \Delta f)$ 3D RR₀ table (assuming $\rho=1$)

with $\Delta RR(\rho, \Delta f) = (a_0 + a_1 \Delta f) (1 - e^{-b_0(\rho - 1)})$

(parameters a_0, a_1, b_0 are obtained with the use of NWP model data)

Solve Δf from $RR(P, T, f_0 + \Delta f, \rho) = RR_{\text{meas}}$ (by linearizing RR_0)

Aeolus Science Conference, 22 May 2023, Rhodes - Greece

 Aeolus Rayleigh-channel winds in cloudy conditions

 Gert-Jan Marseille¹

 Jos de Kloe¹

 Alain Dabas²

 Thomas Flament^{2,3}

RR

submitted to QJRMS

Aeolus data coverage - 15 August 2019 ~02:53 UTC _____ D1

- Rayleigh-cloudy winds are similar to Mie-cloudy winds (visually)
- Rayleigh-cloudy winds have lower resolution, but are more representative to model winds (resolution)
- Both winds are complementary for NWP

aeolus

Rayleigh-cloudy winds statistics – FM-A period

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

Ň

🛰 aeolus

DTSC

Rayleigh-cloudy winds statistics (ctd.)

Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

Koninklijk Nederlands

Ň

without parameterization

aeolus

with parameterization

DISC

Rayleigh-cloudy monitoring; FM-A period

Koninklijk Nederlands

Meteorologisch Instituut

- Parameters estimated on a weekly base; stable!
- Overall biases of Rayleigh-cloudy winds are very small after 16 February 2023 and will be in forthcoming reprocessing activities

- We have a procedure in place to retrieve good quality Rayleigh-cloudy winds
 - Bias-free with a random error slightly larger than for Rayleigh-clear winds
- Improved Rayleigh-cloudy winds are available in the operational data set since 16 Febuary 2023 and will come available for the complete mission in forthcoming reprocessing activities
- The impact of Rayleigh-cloudy winds for NWP is to be assessed; first results will be presented by Michael Rennie

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

backup

Standard Rayleigh-clear statistics

- 1-7 Dec. 2022
- (o-b) bias: 0.00 m/s
- (o-b) SMAD/STDEV: 4.24/4.82 m/s
- Better than Rayleigh-all (as expected, because Rayleighcloudy is worse than Rayleighclear)
- But note the different sample (510K vs. 845K observations)

🎮 aeolus

DTSC

Aeolus Science Conference, 22 May 2023, Rhodes - Greece

Koninkliik Nederlands

Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

-300 -250 -200 -150

Doppler shift (MHz)

 $HLOS_{NWP} => \Delta f_{NWP} => RR_0$

 $\Delta RR = RR_{meas} - RR_0$

Koninkliik Nederlands Aeteorologisch Instituu Ministerie van Verkeer en Waterstaat

- ΔRR is a combination of
 - Mie contribution ____
 - Instrument noise ____
 - NWP model error ____
- > Averaging over a long time period reduces noise and model error contribution
- \blacktriangleright What is left is Mie contribution => curve fitting

(P,T) from NWP

aeolus