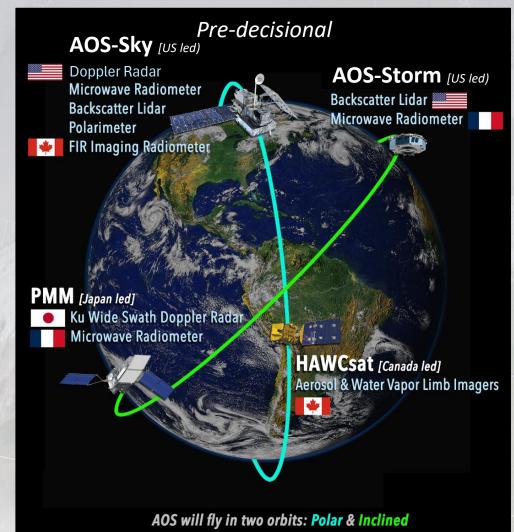

ATMOSPHERE Dbserving System

NASA Atmosphere Observing System (AOS)

Daniel J. Cecil¹, NASA MSFC AOS Deputy Project Scientist – Suborbital Daniel.J.Cecil@nasa.gov

Scott Braun², John Yorks², Tyler Thorsen³

1 NASA Marshall Space Flight Center 2 NASA Goddard Space Flight Center 3 NASA Langley Research Center


ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop November 2023

AOS Addresses Aerosol, Cloud, Convection, and Precipitation Processes Atmosphere Observing System

- AOS-Storm (Inclined orbit, 2029)
 - JAXA PMM Radar (Ku-band, Doppler)
 - CNES C2OMODO tandem radiometers (89-325 GHZ)
 - ALICAT backscatter lidar (532, 1064 nm)

AOS-Sky (Sun-synchronous orbit, 2031)

- Backscatter lidar (details TBD Italian partnership?)
- Doppler radar (details TBD)
- Passive microwave radiometer (89-700 GHz)
- Polarimeter (350-1570 nm)
- CSA Thin Ice Cloud Imaging Radiometer (4-73 μm)
- CSA aerosol and moisture limb imagers
- AOS Suborbital
 - Post-launch field programs
 - Surface-based networks, supersites
 - Leverage existing capabilities, more international partners

International partnerships are very important to AOS, both in the satellite constellation and in suborbital activities.

AOS Suborbital

Low Clouds: *Microphysics, precipitation initiation*

Convection/High Clouds: *Microphysics and dynamics, anvil cirrus lifecycle.*

Aerosol-Cloud-Radiation Interactions: Vertically resolved aerosol-cloud-radiation interaction processes and lifecycle.

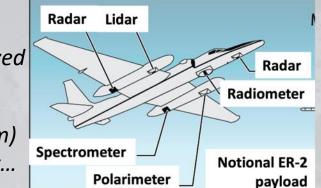
Large airborne campaigns addressing all science themes

- Link airborne campaigns with well-instrumented surface sites
- Partner with other programs / nations where practical

Campaigns after launch to enable cal-val

Aircraft and payloads depicted are notional... instruments to be prioritized / deconflicted for each campaign.

> Need a high altitude (over-storm) remote sensor...

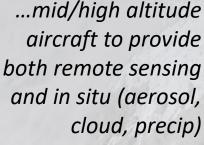

> > ...low/mid altitude

aircraft to provide

both remote sensing

and in situ (aerosol,

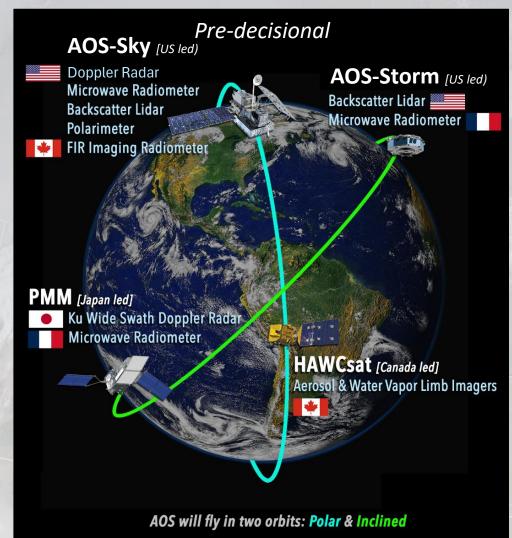
cloud, precip)



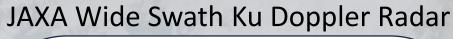
Cloud + Aerosol probes

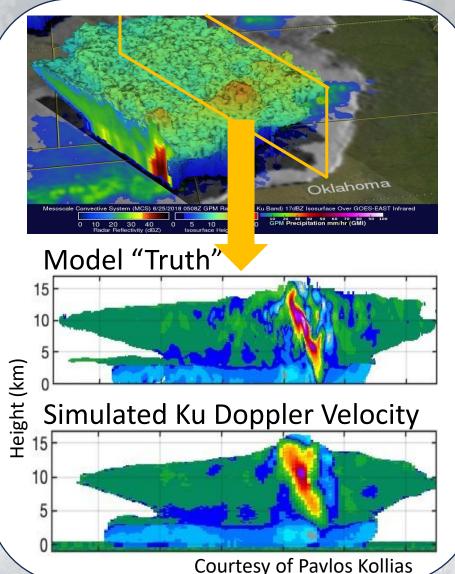
 Radar
 Notional P-3 payload

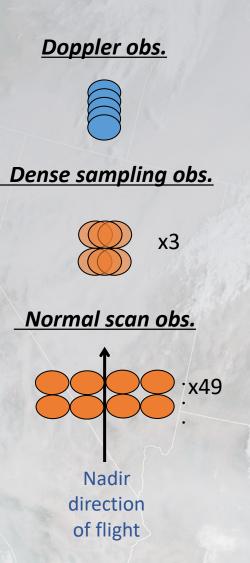
Aircraft, surface sites, and networks from partners will be especially helpful.



AOS and EarthCARE

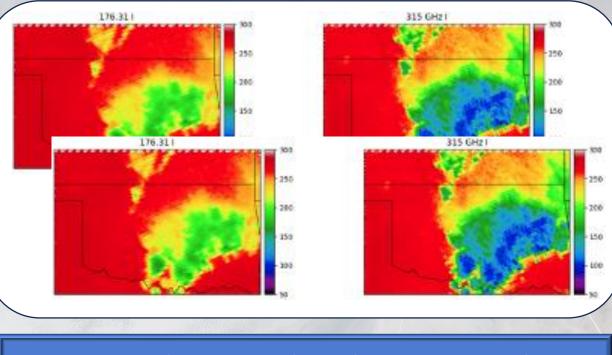

- AOS and EarthCARE approach cloud and aerosol profiling using similar instrument types, but different frequencies and other details
 - Many people / institutions aligned with both missions
- Some commonality in the cal-val needs
- Surface-based measurements, field campaigns, validation approaches used by each will be of interest to the other
 - Validation best-practices talk Wednesday afternoon
 - I'm here to discuss collaborations, match names to faces, etc.



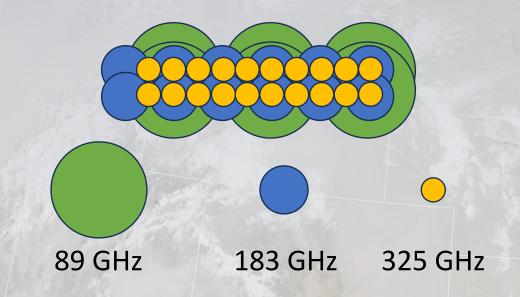

Graphic reflects initial architecture concept directed at KDP-A. Additional direction was provided to study architecture changes, which are still on-going.

ATMOSPHERE OBSERVING SYSTEM

Baseline Requirements


Vertical sampling, resolution: 250, 500 m for Doppler, dense 125, 250 m for normal scan Horizontal Resolution: 5 km Observation range (altitude): Doppler 17 km Dense 20 km Normal 18-20 km Swath: 250 km Sensitivity (min dBZ): Doppler 7.3 dBZ Dense 7.3 dBZ Normal 15 dBZ Doppler uncertainty: 2 m/s @ 16 dBZ Unambiguous Doppler range: ±30 m/s

C20MODO Radiometer Capabilities NLT March 2029 launch 430 km orbit, 55° inclination



C2OMODO: Convective Core Observations through MicrOwave Derivatives in the trOpics (Brogniez et al. 2022)

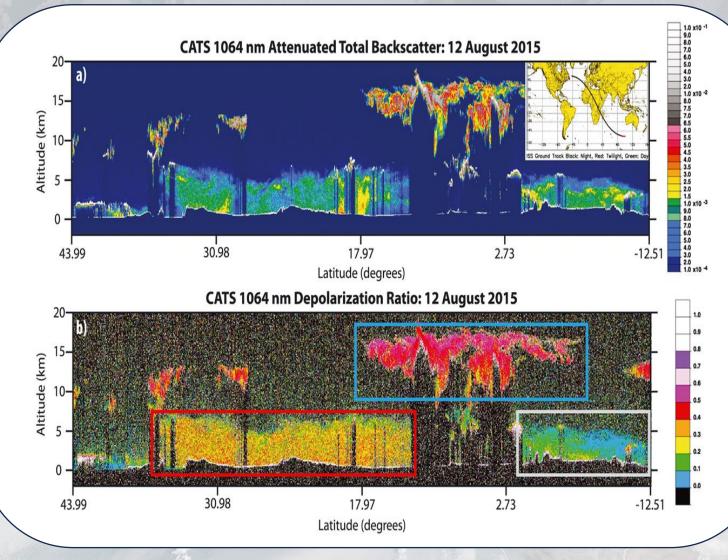
CNES Microwave Radiometers (89, 183, 325 GHz)

CNES Radiometer Scan Pattern Near Nadir

Time-differenced radiometer measurements (~1-2-minutes) contain information on convective vertical motions

89 GHz10 km FOV1 channel183.31 GHz5 km FOV6 channels325.15 GHz3 km FOV3 channels

Nyquist sampling Nyquist sampling Continuous sampling


ALICAT Lidar Capabilities

Atmosphere Observing System

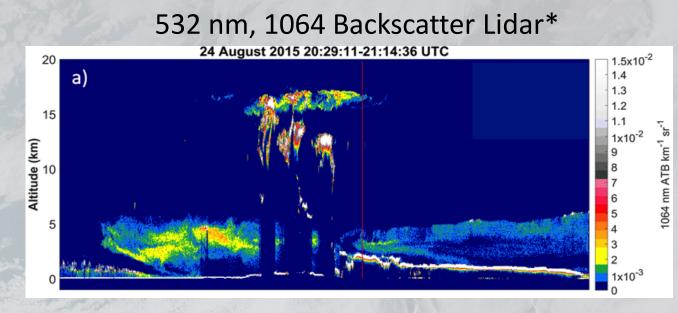
- NLT March 2029 launch
- 430 km orbit, 55° inclination

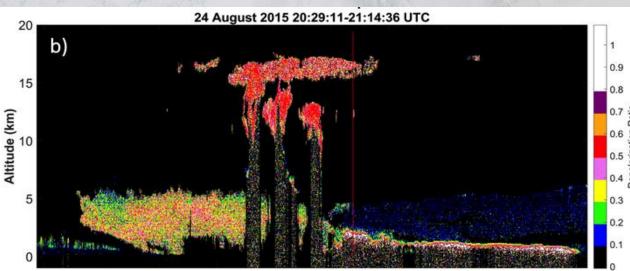
CATS Backscatter Lidar Example

ALICAT: Atmospheric Lidar for Cloud and Aerosol Transport

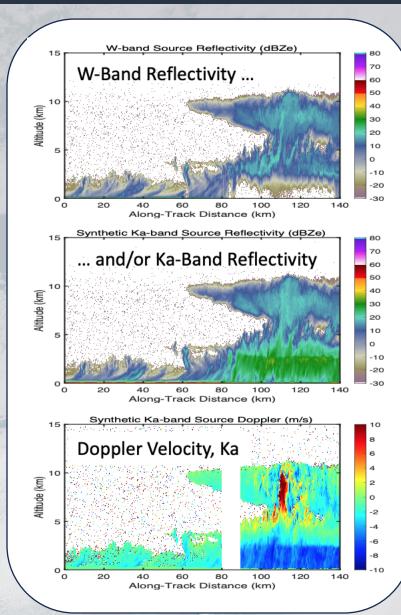
Low pulse energy, high pulse repetition frequency

Frequencies: 532, 1064 nm


Provides total attenuated backscatter and depolarization at both frequencies


Heritage: Cloud Physics Lidar, Cloud-Aerosol Transport System (CATS)

- NET December 2031 launch
- 450 km orbit, sun-sync-13:30 LTAN



- Target requirement of daytime SNR equivalent to CALIPSO night SNR
- NASA HQ has initiated study of partnership with Italian Space Agency (ASI)
- ASI lidar:
 - 355 nm Raman (extinction)
 - 532, 1064 nm backscatter
- Requires formation flying of AOS-Sky and ASI lidar

AOS-Sky Radar

• 450 km orbit, sun-sync-13:30 LTAN


Baseline Requirements

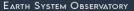
Quantity	Resolution @ altitude	Accuracy	Sensitivity @ altitude
Radar reflectivity, cloud- profiling	Horiz.: 2.0 km Vert.: 300 m @ 0.5 – 1.0 km 300 m @ 1.0 - 2.5 km 500 m @ 2.5 – 6 km 500 m @ 6 – 20 km	1.5 dB *	≤–5 dBZ @ 0.5 km – 1 km ≤–15 dBZ @ 1 km – 2.5 km ≤–20 dBZ @ 2.5 km – 6 km ≤–24 dBZ @ 6 km – 20 km

• Requirements are frequency agnostic

• Enhancements to be studied: Second frequency, narrow swath, passive measurements if Ka band, LDR

Figures at left courtesy of Matt McLinden

AOS-Sky Radiometer Requirements

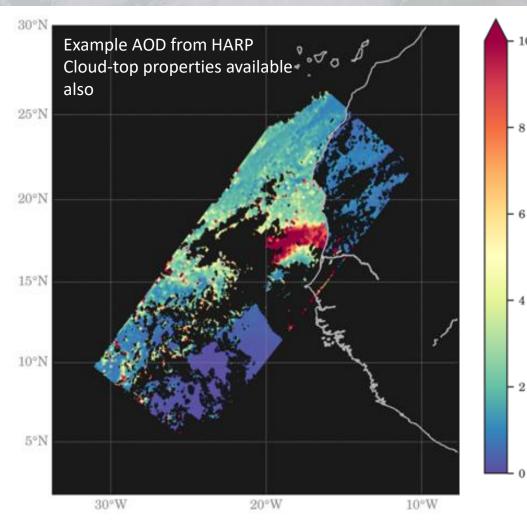

Microwave Radiometer: 89-700 GHz 182.31 GHz Nadir I 180.31 GHz Nadir I 177.31 GHz Nadir I 170.5 GHz Nadir I 275 250 225 200 🖌 175 325±0.9 GHz Nadir 684 GHz Nadir I 325±3.4 GHz Nadir 325±11.5 GHz Nadir I 150 - 125 100 Courtesy of Yuli Liu, UMBC

Cross-track scanning, ≥750 km swath FOV ≤10 km at nadir, ≤20 km at edge of swath

Baseline Requirements

Bands (# Channels)	Accuracy (K)	Polarization
89-113 GHz (1)	≤ 0.5 K	Target: Dual Minimum: Single
118 GHz (3)	≤ 0.75 K	Winning and Single
183.3 GHz (3)	≤0.75 K	Target: Dual Minimum: Single
165/205 GHz (1)	≤0.75 K	
310 GHz (3) 325.2 or 380.2 GHz (2)	≤ 1.5 K ≤ 1.5 K	Target: Dual Minimum: Single
640-700 GHz (1)	≤ 1.5 K	Dual

Sub-mm wavelengths bring a cloud sensitivity that is new for NASA missions


AOS Polarimeter Requirements

AOD_{550nm}

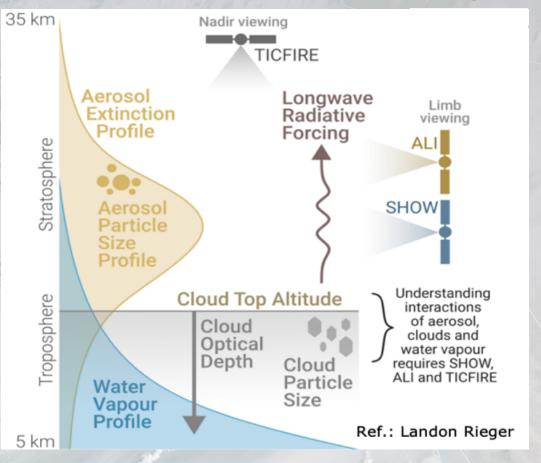
6

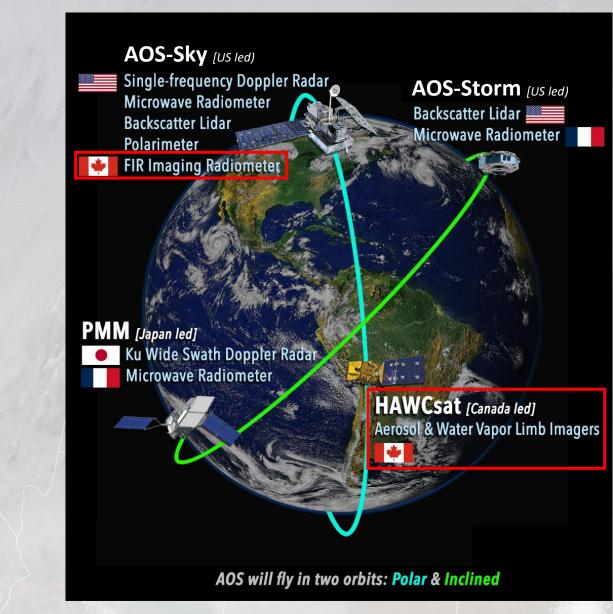
UV-VIS-NIR-SWIR Multi-angle Polarimeter

Baseline Requirements

Type and/or Wavelength range (nm)	Number of spectral channels	Number of viewing angles per pixel
UV: 350 – 390 nm ¹	1	10
VIS: 410 – 750 nm	2	10
Hyperangle: 660 – 870 nm	1	60
Water Vapor: ~940nm	1	10
SWIR Cirrus: ~1380	1	10
VNIR-SWIR: 870 – 1570 nm	3	10

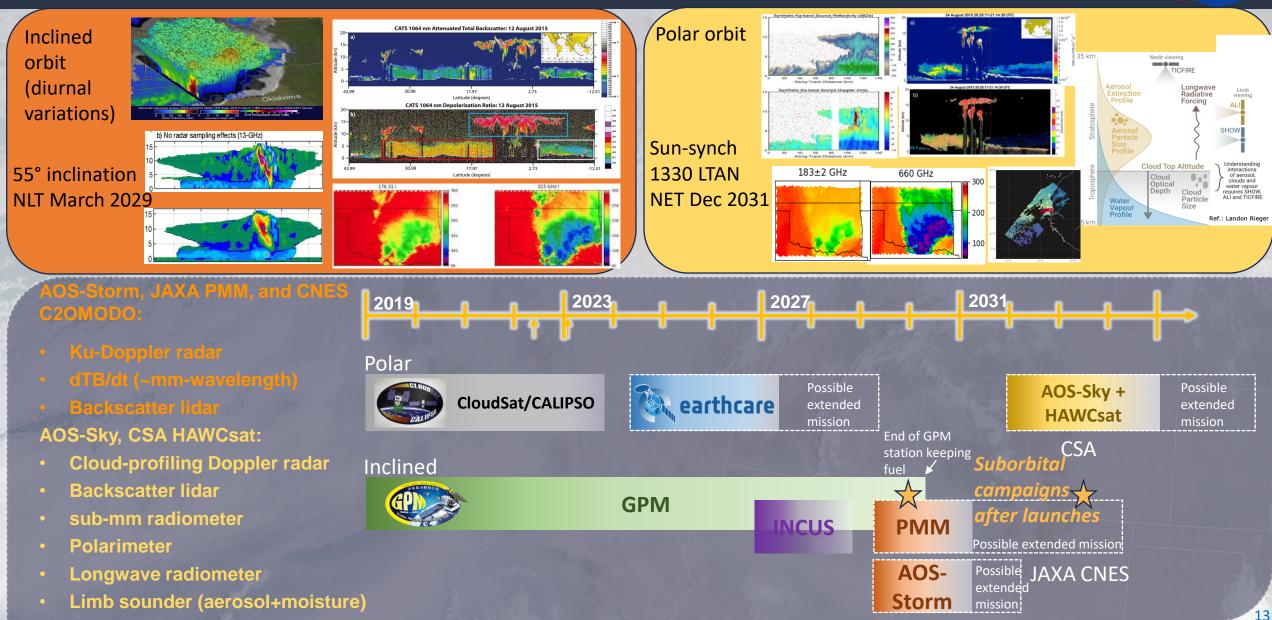
300 km swath width


0.5 km IFOV (at nadir)


Atmosphere Observing System

CSA Contributions

Canadian Space Agency Longwave-Far Infrared Imaging Radiometer (4-73 μm), Aerosol/Moisture Limb Sounding



Summary of AOS Measurements & Timeline

Atmosphere Observing System

EARTH SYSTEM OBSERVATORY

