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Introduction Method description

Satellites typically record total columns for various atmospheric W‘ﬁ gog?birlle tV‘t’Oh_methogzDTf'_‘If _firStBiin ;‘Dtegh”fique

trace gases, with varying signal-to-noise ratios (SNR). For ~ S97S9 DIOtH MAteiing an ltering , [2]) from |

computer vision. It is a minimum mean square estimator

example: (MMSE) that uses self-similarity of image patches. By
« TROPOMI: using it for a multichannel image with normalized data, it
. NC)2 IS measured with excellent SNR uses the self-similarity in the high SNR image patches Ok
+ SO, is measured with lower SNR for denoising, and the same selected patches are then FESSEES
. CO2M: used to denoise the corresponding low SNR image. In ™= 2]
' other words, the high SNR data guides the denoising.

 NO, is measured with excellent SNR
2 The second method is another MMSE, that uses the joint presence of signal

’ COZ_'S measured with lower _SNR _ enhancements in the satellite image. This Bayesian optimal estimator of the
The question: can we use the signal with excellent SNR to noise free CO, field can be obtained fully from the data as

improve the signal with lower SNR? The high SNR signal é=[1 0](I—-CnCz3)(M - E[M]) + E[c].
contains similar information regarding hot spot plumes.

Here, C,,, is the noise covariance matrix, € is the (inverse of) the data

Proposed method c:_c?variance matrix, and E[ﬁ] is the expected value for the multichannel data
(a) Noisy NO %1016 M (e.g., a vector of CO, and NO, data), and E|c]| is the expected value for the
51 95 y 2 These images come from 5 single channel low SNR data c (e.g., CO,).
True the SMARTCARB dataset
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402 ~ — Noisy - - us close to the
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' + Application to TROPOMI data
5 :
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RS SSIM=0.8 —4 in the South Africa region is not much 2~ . o = . .o  °°
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Longitude Longitude _ Conclusions & outlook
The advantage of the proposed method is that we require less _ _ _
data to obtain reliable emission estimates. \We can for example * We have outlined a quick (<1 second) method which can be used to
_ _ . _ P denoise low SNR images using co-registered high SNR images
!mprqve the SNR Of divergence maps by |mpr0V”_‘9 the SNR of » We have tested the method for the divergence method, and have shown
individual overpass images. Then we should get higher accuracy that it can improve the results for the synthetic SMARTCARB dataset, but
in emission estimates, and possibly a higher temporal resolution. see no big differences when using TROPOMI data.
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