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Satellites typically record total columns for various atmospheric
trace gases, with varying signal-to-noise ratios (SNR). For
example:
• TROPOMI:

• NO2 is measured with excellent SNR
• SO2 is measured with lower SNR

• CO2M:
• NO2 is measured with excellent SNR
• CO2 is measured with lower SNR

The question: can we use the signal with excellent SNR to
improve the signal with lower SNR? The high SNR signal
contains similar information regarding hot spot plumes.
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Introduction Method description

• We have outlined a quick (<1 second) method which can be used to 
denoise low SNR images using co-registered high SNR images

• We have tested the method for the divergence method, and have shown 
that it can improve the results for the synthetic SMARTCARB dataset, but 
see no big differences when using TROPOMI data.

Conclusions & outlook

We combine two methods. The first is a technique
called block matching and 3D filtering (BM3D, [2]) from
computer vision. It is a minimum mean square estimator
(MMSE) that uses self-similarity of image patches. By
using it for a multichannel image with normalized data, it
uses the self-similarity in the high SNR image patches
for denoising, and the same selected patches are then
used to denoise the corresponding low SNR image. In
other words, the high SNR data guides the denoising.

Application to SMARTCARB data

The advantage of the proposed method is that we require less
data to obtain reliable emission estimates. We can for example
improve the SNR of divergence maps by improving the SNR of
individual overpass images. Then we should get higher accuracy
in emission estimates, and possibly a higher temporal resolution.

The second method is another MMSE, that uses the joint presence of signal
enhancements in the satellite image. This Bayesian optimal estimator of the
noise free CO2 field can be obtained fully from the data as

�̂�𝑐 = [1 0] 𝑰𝑰 − 𝑪𝑪𝒏𝒏𝒏𝒏𝑪𝑪𝒅𝒅𝒅𝒅−1 𝑀𝑀 − 𝐸𝐸 𝑀𝑀 + 𝐸𝐸 𝑐𝑐 .

Here, 𝑪𝑪𝒏𝒏𝒏𝒏 is the noise covariance matrix, 𝑪𝑪𝒅𝒅𝒅𝒅−1 is the (inverse of) the data 
covariance matrix, and 𝐸𝐸 𝑀𝑀 is the expected value for the multichannel data 
𝑀𝑀 (e.g., a vector of CO2 and NO2 data), and 𝐸𝐸 𝑐𝑐 is the expected value for the 
single channel low SNR data 𝑐𝑐 (e.g., CO2).

Applying the 
divergence method to 
the SMARTCARB 
dataset, the method 
proposed here 
leads to the lowest 
RMSE and R2

scores for emission 
estimation, even 
when using only 1/6th

of the data (i.e., when 
using one satellite 
rather than a 
constellation of 6 
satellites as modeled 
within SMARTCARB). 
This indicates that the 
method correctly gets 
us close to the 
‘noisefree’ case while 
using less data.

Application to TROPOMI data
We applied the denoising techniques 
on a full year (2021) of TROPOMI 
NO2 and SO2 data, to denoise the 
SO2 data, and the corresponding 
divergence maps. In the example 
given on the right, we obtain 
divergence maps with 42% less noise 
when using the proposed approach of 
BM3D+joint MMSE denoising. Using 
BM3D only, yields only an 18% 
improvement. However, in our tests, 
emission estimates of three sources 
in the South Africa region is not much 
affected by the denoising.

These images come from 
the SMARTCARB dataset 
[1], a synthetic dataset of 
CO2M observations over 
Germany. Note how the 
iid Gaussian noise 
drowns out the plume 
signal in the noisy CO2
data, while the noisy NO2
data clearly still contains 
them. The denoising 
operation recovers the 
plumes very well, using the 
NO2 signal as guidance. 0
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