Introduction to Trilateral S&MA Task Force "Space Sustainability"

Kumi NITTA Japan Aerospace Exploration Agency System Safety and Space Operations Safety Unit

TF Activity Report Contents

1. Introduction to the "Space Sustainability TF

- (1) Background and History
- (2) Space Sustainability activities around the world
- (3) TF Charter Outline
- (4) Expected Outcome

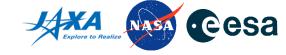
2. Phase 1 Achievement

- (1) Output
- (2) Example IP for Small Debris
- (3) Small Debris IP publish plan
- (4) Summary
 - Information Package: Standard Content
 - Information Package Example
 - Initial User Feedback

3. Conclusion

- (1) From the Team
- (2) Future Phase 2 Plan Outline

1. Introduction to the SSTF – (1) Background and History


(1) Background

- An opinion was raised by a participant upon continuous Space Debris increase that; "Isn't there <u>anything Trilateral S&MA could do</u> against the <u>worsening orbit situation</u>?" (TRISMAC 2021; May 2021)
- We all agreed to form a TF dedicated to "Space Sustainability" (Trilateral Summit; June 2021)

(2) History

- Kickoff meeting held in Oct. 2021
- Participants agreed on the understanding of the situation and the TF mission;
 - ✓ Requirements ("What to Dos") are available in various doc's but <u>NOT properly implemented</u> as expected
 - ✓ <u>S&MA are the ones to provide "How to Dos"</u> to realize "Space Sustainable" products/ services
 - ✓ <u>Selected UNCOPUOS LTS Guideline</u> as "Starting Point" as it brings a comprehensive agenda for Space Sustainability
 - ✓ TF to develop <u>"Information Packages (IP)"</u> to be used in development frontlines
- TF Charter was signed in Mar. 2022
- Developed an IP example and started (or "about to start") user feedback collection


Introduction to the SSTF – (2) Space Sustainability activities around the world

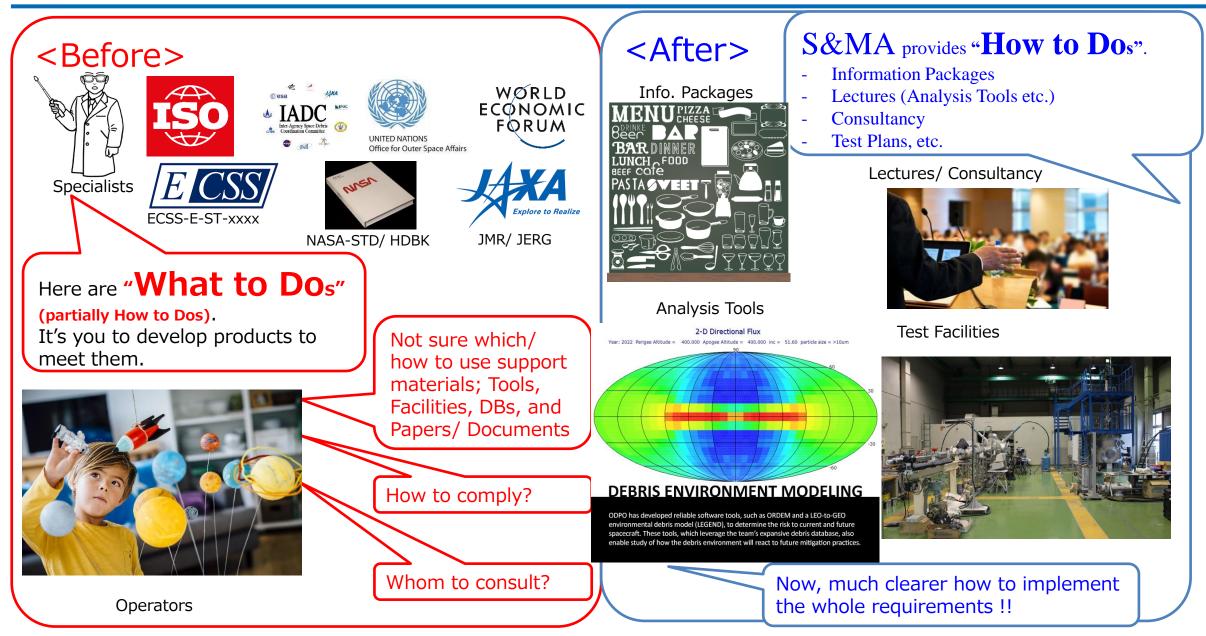
- There are many conferences and working groups around the world to discuss space sustainability. Here are some of the events and groups to look out for:
- ✓ UN/Portugal Conference: "Management and Sustainability of Outer Space Activities"
- ✓ Committee on the Peaceful Uses of Outer Space (COPUOS)COPUOS
- ✓ Secure World Foundation & Japanese government : The Summit for Space Sustainability
- ✓ European Space Forum
- ✓ UNOOSA: Working Group on the Long-Term Sustainability of Outer Space Activities
- ✓ The World Economic Forum: Global Future Council on Space Space Sustainability Monitor
- ✓ The Earth∞Space Sustainability Initiative
- ✓ Austria's Federal Ministry: Centre of Excellence for Space and Sustainability (CESS)

Etc.....

All of them are mainly guidelines and regulations, and there seems to be little technical discussion, so I felt that if our activities were more technical than technical, they would be more inclusive.

1. Introduction to the SSTF – (3) from TF Charter Outline

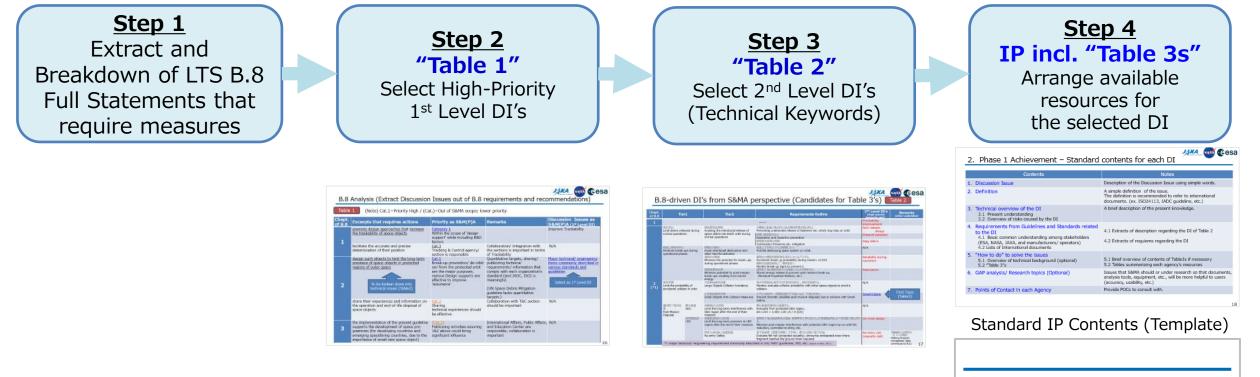
(1)What should be implemented in this TF?


- (a) Many regulations, guidelines, and recommendations related to space sustainability (including space debris mitigation) have been issued, and "What to Do" for Space Actors is becoming more apparent.
- (b) However, consistent compliance with the regulatory framework above continues to be problematic. It is in the common interest of all Space Actors to establish and share possible approaches to meet the full intent of policy related to space sustainability.

(2)TF Mission

- (a) S&MA will provide "How to Do" support to the operators (projects and businesses) inside and outside each agency by utilizing its accumulated technology, knowledge, and various networks.
- (b) Specifically, we provide helpful information and technical support to assist operators to "implement" the requirements and recommendations (Shall, Should, Recommend) specified in various guidelines, ISO, and standard documents of each agency into their products, design, manufacturing, and operation technologies.

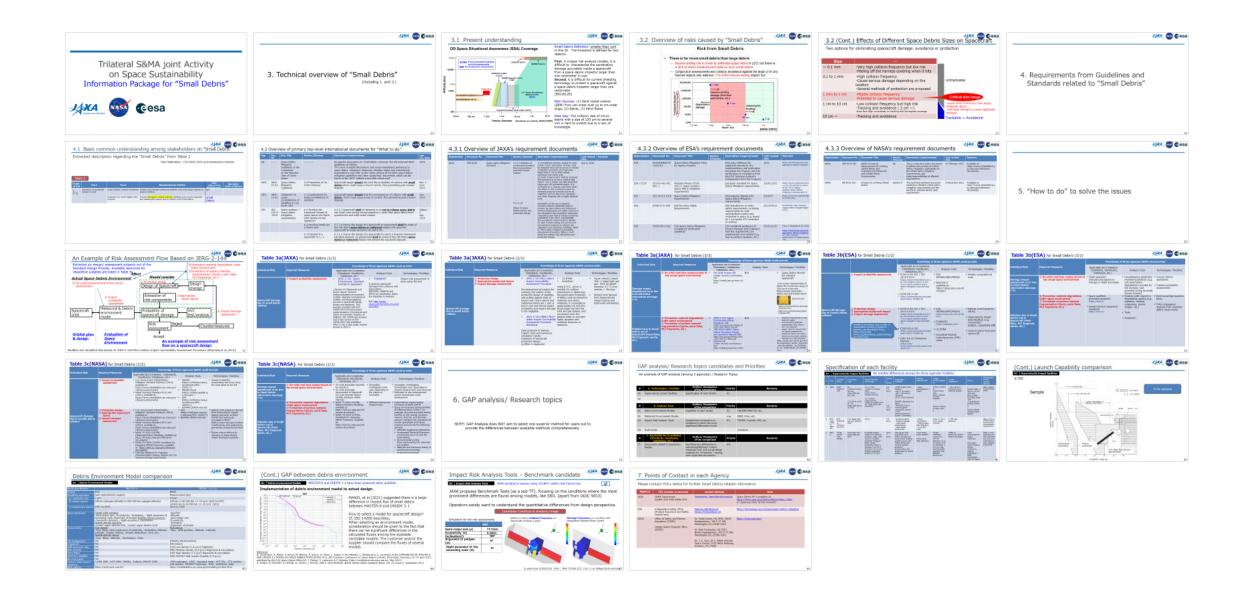
1. Introduction to the SSTF – (4) Expected Outcome



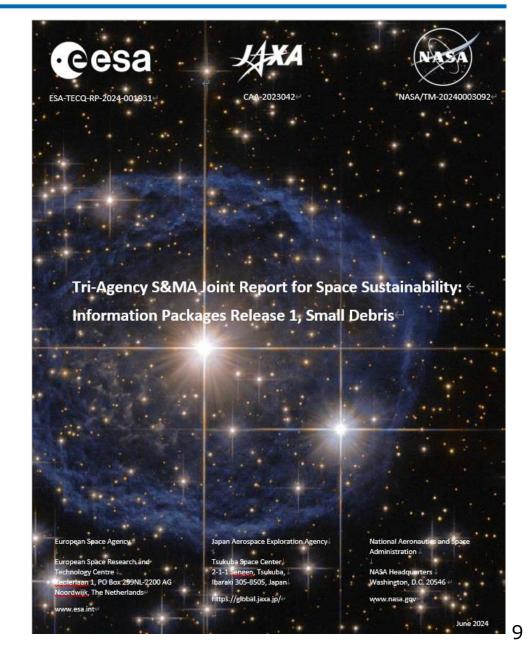
2. Phase 1 Achievement – (1) Output

Starting from LTS B.8 high-level requirements, extracted technical keywords (Discussion Items; DI) for which "How to Dos" should be developed and shared.

Table 3s in the "Information Package" provide comprehensive information from three agencies.



2.Phase 1 Achievement – (2) Example IP for Small Debris


2. Phase 1 Achievement (3) – Small Debris IP publish plan

(1) The joint Doc. development

The final draft was sent out for final review. Agencies' internal Doc. authorization , Small Debris IP publish and HP uploads will follow.

Co-Authors;

Kumi NITTA (JAXA; Leader) Yukihito KITAZAWA (JAXA) Shin TAURA (JAXA) Horoyuki HIRABAYASHI (JAXA) Frank GROEN (NASA) Matthew FORSBACCA (NASA) J.-C. LIEU (NASA) Rosario NASCA (EX-ESA) Paloma VILLAR (ESA) Sergio VENTURA (ESA)

2. Phase 1 Achievement (4)- Summary

We're ready to listen to potential users.

We could develop better packages upon their voice and expand coverage along with the TF purpose.

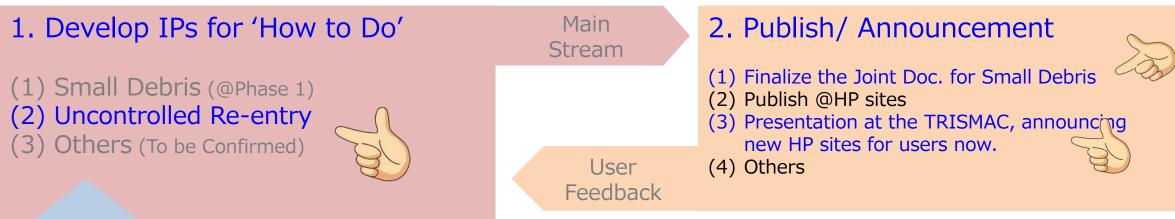
Planned Actions (based on the Charter)	Achievements	Comments
 Sort useful Knowledge Base Applicable documents and Websites (Standards, Handbooks, databases, etc.) Owned tools Available technologies and facilities 	 Broke down LTS B.8 to extract technical keywords (DIs), which require comprehensive IPs Took "Small Debris" as a DI example and developed the draft IP Completed standard contents of IP Completed an example draft IP for Small Debris 	 Draft IP comprehensively summarized required information Collecting feedback from potential users
2. Develop the way of informing the operators	Not yet completed : Implemented an internal document approval process for each agency. It will be listed on the website of each Agency.	It need to prepare multiple IPs before informing.
3. Develop action plans forward	The TF agreed on the outline of the Phase 2 plan and began to consider its contents.	

3. Conclusion-(1) From the Team

- 1. The team believes the activity itself and the "Information Package" are worthwhile;
 - (1) shows fully supportive attitude of the three agencies
 - (2) comprehensive information
 - (3) TBD

2. On the other hand, the achievement to date is limited;

(1) Just started users' voice on the Draft IP; subject to refinement(2) Only one DI has been covered; more DIs should be covered(3) Yet to be shared with public users


3. The team strongly recommends continuing the TF, along with the Charter.

3. Conclusion-(2) Phase 2 Plan Outline

"Phase 1" = Apr.2022 – Dec.2022; tried to develop an IP for "Small Debris" and now finalized. "Phase 2" = Dec. 2022 (previous Trilateral Summit) until 2025(TBD)

- ✓ Publish a joint Doc. for Small Debris / Presentation @ TRISMAC
- ✓ Develop another IP for Uncontrolled Re-entry

Input

Out-of-TF activities (upon agreement)

- (1) Comparison Test (ex. Hypervelocity impact facilities)
- (2) Benchmark Evaluation (ex. Impact Risk Analysis Tools)
- (3) Design Guideline comparison (ex. Protection Design)

17thHYPERVELOCITY

https://hvis2024japan.jp/

IMPACT SYMPOSIUM

HVIS 2024

2024 9.8^s_v - 9.13^F_R Tsukuba, Japan

Tsukuba International Congress Center

2-20-3 Takezono, Tsukuba City, Ibaraki Prefecture 305-0032

Key Dates Abstract Due November 30, 2023 **December 15, 2023 Abstract acceptance notification** Late-January 2024 **Paper manuscripts due** March 31, 2024 **Revised papers due** July 30, 2024

Appendix

B.8 Analysis (Extract Discussion Issues out of B.8 requirements and recommendations)

Table 1(Note) Cat.1=Priority High / (Cat.)=Out of S&MA scope; lower priority

Chapt. of B.8	Excerpts that requires actions	Priority as S&M(P)A	Remarks	Discussion Issues as S&M(P)A (1 st Level DI)
1	promote design approaches that increase the trackability of space objects	Category 1 Within the scope of 'design support' while including R&D factors		Improve Trackability
	facilitate the accurate and precise determination of their position	<u>Cat.3</u> Tracking & Control agency/ section is responsible	Collaboration/ Integration with the sections is important in terms of Trackability	N/A
2	design such objects to limit the long-term presence of space objects in protected regions of outer space To be broken down into technical issues (Table2)	Cat.1 Break-up prevention/ de-orbit on/ from the protected orbit are the major purposes; various Design supports are effective to improve 'assurance'	Quantitative targets, sharing/ publicizing technical requirements/ information that comply with each organization's standard (and IADC, ISO) is meaningful. (UN Space Debris Mitigation guideline lacks quantitative targets.)	Major technical/ engineering items commonly described in various standards and guidelines Select as 1 st Level DI
	share their experiences and information on the operation and end-of-life disposal of space objects	<u>Cat.2</u> Sharing technical experiences should be effective	Collaboration with T&C section should be important	N/A
3	the implementation of the present guideline supports the development of space pro- grammes (for developing countries and emerging spacefaring countries, due to the importance of small-size space object)	(<u>Cat.2</u>) Publicizing activities assuring 1&2 above could bring significant influence	International Affairs, Public Affairs, and Education Center are responsible; collaboration is important	N/A

B.8-driven DI's from S&MA perspective (Candidates for Table 3's)

Explore to R	
3's)	Table 2

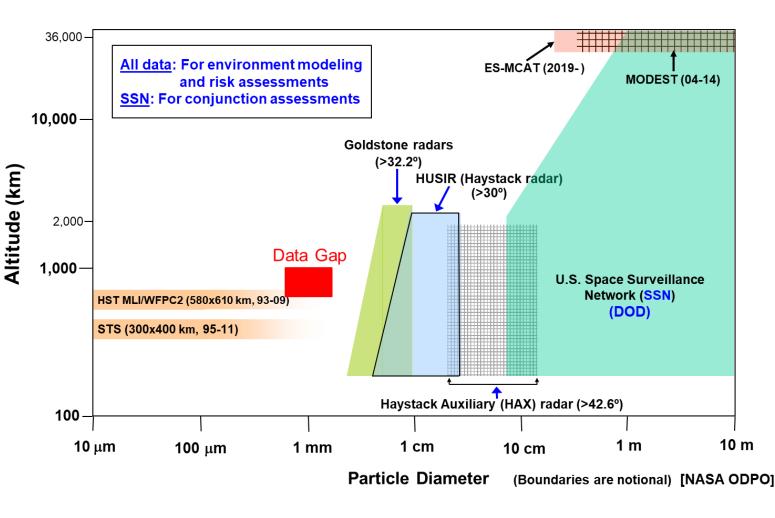
Chapt. of B.8	Tie	r1	Tier2	Tier2 Requirements Outline		Remarks (other candidate	es)
1					Trackability improvement		
	発生抑止 Limit debris released during normal operations		部品等放出抑制 Avoiding the intentional release of space debris into Earth orbit during normal operations	 分離後に軌道に残る恐れのある締結具等の放出防止 Preventing unintended release of fasteners etc. which may stay on orbit 剥離、脱落等の防止 Separation and Desertion prevention 燃焼排出物等の抑制 Combustion Emissions etc. mitigation 	Non-release design Material selection Slag debris		
	軌道上破砕の防止 Minimize break- operational phas	ups during	破壞行為禁止 Avoid intentional destruction and other harmful activities		N/A		
	operational phases		運用中の事故 Minimize the potential for break-ups during operational phases	運用中の偶発的破砕発生率を0.001以下とする。 Accidental break-up probability during mission <0.001 破砕の兆候を検知して、破砕を防ぐ。 Monitor Break-up signs to prevent it.	Reliability during operation		
			残留推薬放出等 Minimize potential for post-mission break-ups resulting from stored energy	運用終了後の破砕を防ぐため残留エネルギを排除する。 Stored energy release to prevent post-mission break-up. (Residual Propellant Release, etc.)	Passivation		
2 (*1)	衝突対策 Limit the probat accidental collisi		大型物体衝突回避 Large Objects Collision Avoidance	他の宇宙物体と衝突する可能性を検知し、衝突を回避する。 Monitor, evaluate collision probability with other space objects to avoid a collision.	N/A	First Fords	
			小型物体衝突対策 Small Objects Anti-Collision Measures	デブリとの衝突で(廃棄処置が不可能になる)不具合を防ぐ。 Prevent disorder (disables post-mission disposal) due to collision with Small Debris.	Small Debris	First Topic (Table3)	
	運用終了後の処 置 Post-Mission Disposal	静止軌道 GEO	保護域からの排除 Limit the long-term interference with GEO region after the end of their missions	静止軌道保護域から退避する。 Evacuate from protected GEO region. ΔH=235 + 1,000 ×CR ×A / m [km]	N/A		
		低高度軌道 LEO	保護軌道域からの排除 Limit the long-term presence in LEO region after the end of their missions	運用終了後は軌道寿命の短縮、制御再突入等の処分により保護軌道域との干渉を最小限に抑える。 Minimize post-mission interference with protected GEO region by on-orbit life reduction, controlled re-entry, etc.	De-orbit design		
			再突入時の地上被害回避 Re-entry Safety	落下危険度(傷害予測数)を予測し、要すれば破片落下区域 Evaluate fall risk (projected casualty), announce anticipated area where fragment reaches the ground when required.	Re-entry risk (casualty risk)	溶融解析の比較照合 (B.9へも貢献) Melting Analysis comparison (also	
	*1 major tech	nical/ engine	eering requirement commonly descril	bed in UN/ IADC guidelines, ISO, etc. (based on Kato, 2021)		contribute to B.9)	17

Explore to Realize

2. Phase 1 Achievement – Standard contents for each DI

	Contents	Notes
1.	Discussion Issue	Description of the Discussion Issue using simple words.
2.	Definition	A simple definition of the issue. The definition is recommended to refer to international documents. (ex. ISO24113, IADC guideline, etc.)
3.	Technical overview of the DI 3.1 Present understanding 3.2 Overview of risks caused by the DI	A brief description of the present knowledge.
4.	Requirements from Guidelines and Standards related to the DI 4.1 Basic common understanding among stakeholders (ESA, NASA, JAXA, and manufacturers/ operators) 4.2 Lists of International documents	4.1 Extracts of description regarding the DI of Table 24.2 Extracts of requiems regarding the DI
5.	"How to do" to solve the issues 5.1 Overview of technical background (optional) 5.2 "Table 3"s	5.1 Brief overview of contents of Table3s if necessary 5.2 Tables summarizing each agency's resources
6.	GAP analysis/ Research topics (Optional)	Issues that S&MA should or under research so that documents, analysis tools, equipment, etc., will be more helpful to users (accuracy, usability, etc.)
7.	Points of Contact in each Agency	Provide POCs to consult with.

Trilateral S&MA joint Activity on Space Sustainability Information Package for "Small Debris"



3. Technical overview of "Small Debris" (Including 1. and 2.)

3.1 Present understanding

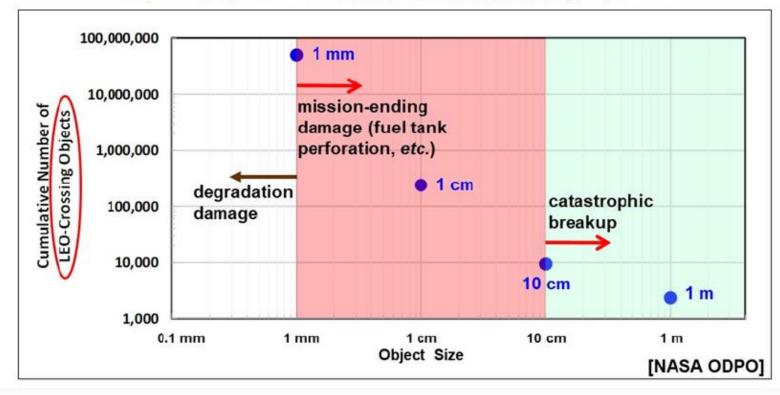
OD Space Situational Awareness (SSA) Coverage

Small Debris Definition: <u>smaller than 1cm</u> in this DI. The threshold is defined for two reasons.

First, in impact risk analysis models, it is difficult to characterize the penetrative damage accurately inside a spacecraft from a space debris impactor larger than one centimeter in size.

Second, it is difficult for current shielding technology to protect a spacecraft against a space debris impactor larger than one centimeter. [ISO16126]

Main Sources: (1) Solid rocket motors (SRM) from µm-order dust up to cm-order slugs, (2) Ejects, (3) Paint flakes


Data Gap: The collision rate of microdebris with a size of 100 µm to several mm is hard to predict due to a lack of knowledge.

3.2 Overview of risks caused by "Small Debris"

Risk from Small Debris

- There is far more small debris than large debris
 - Mission-ending risk is driven by millimeter-sized debris in LEO, but there is a lack of direct measurement data on such small debris
 - Conjunction assessments and collision avoidance against the large (≥10 cm) tracked objects only address <1% of the mission-ending impact risk

3.2 (Cont.) Effects of Different Space Debris Sizes on Spacecraft

Two options for eliminating spacecraft damage: avoidance or protection

Size		
\sim 0.1 mm	 Very high collision frequency but low risk Peeling off the harness covering when it hits 	
0.1 to 1 mm	 High collision frequency Cause serious damage depending on the location Several methods of protection are proposed 	Untrackable
1 mm to 1 cm	Middle collision frequency Potential to cause serious damage	Critical size range
1 cm to 10 cm	•Low collision frequency but high risk •Tracking and avoidance ($2 \text{ cm } \sim$) •Note that High uncertainty in tracking and incomplete coverage	 much more numerous than larger trackable debris still large enough to cause significant damage
10 cm \sim	 Tracking and avoidance 	Trackable = Avoidance

4. Requirements from Guidelines and Standards related to "Small Debris"

4.1 Basic common understanding among stakeholders on "Small Debris"

Extracted description regarding the "Small Debris" from Table 2

Note: Stakeholders = ESA, NASA, JAXA, and manufacturers/ operators

Tab		
	ле	<u> </u>

Chapt. of B.8	Tier1	Tier2	Requirements Outline	DI's (High-priority keywords only)	Remarks (other candidates)
2 (*1)	Prevention of accidental collision in orbit		Monitor and evaluate collision probability with other space objects to avoid a collision.	N/A	
		Protection for Small Objects Anti- Collision	Prevent damage to critical systems (disables post-mission disposal) and catastrophic hazard due to collision with Small Debris.	Small Debris	

4.2 Overview of primary top-level international documents for "What to do."

Org.	Doc. No.	Doc. Title	Section (Clauses)	Description (requirements)	Last rev./date
UN		Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space		No specific description for small debris. However, the UN endorsed IADC guidelines as follows. "For more in-depth descriptions and recommendations pertaining to space debris mitigation measures, Member States and international organizations may refer to the latest version of the IADC space debris mitigation guidelines and other supporting documents, which can be found on the IADC website (www.iadc-online.org)"	2010
IADC	IADC- 02-01	Space Debris Mitigation Guidelines	5.4 Prevention of On- Orbit Collisions	Spacecraft design should also limit the probability of collision with small <u>debris</u> which could cause a loss of control, thus preventing post-mission disposal.	Rev. 3 June 2021
IADC	IADC- 15-03	Statement on Large Constellations of Satellites in Low Earth Orbit	3. Considerations for large constellations of satellites	Spacecraft design should limit the consequences of collision with small debris , which could cause a loss of control, thus preventing post-mission disposal.	July 2021
ISO	ISO 24113 :2019	Space systems — Space debris mitigation requirements	6.1 Avoiding the intentional release of space debris into Earth orbit during normal operations	6.1.1.1 Spacecraft shall be designed so as not to release space debris into Earth orbit during normal operations, other than space debris from pyrotechnics and solid rocket motors.	Edition : 3 July 2019
			6.2 Avoiding break-ups in Earth orbit	6.2.3.4 During the design of a spacecraft an assessment shall be made of the risk that a space debris or meteoroid impact will cause the Spacecraft to break-up before its end of life.	
			6.3 Disposal of a spacecraft or ()	6.3.1.2 During the design of a spacecraft for which a disposal manoeuvre has been planned, an assessment shall be made of the risk that a space debris or meteoroid impact will prevent the successful disposal	2

4.3.1 Overview of JAXA's requirement documents

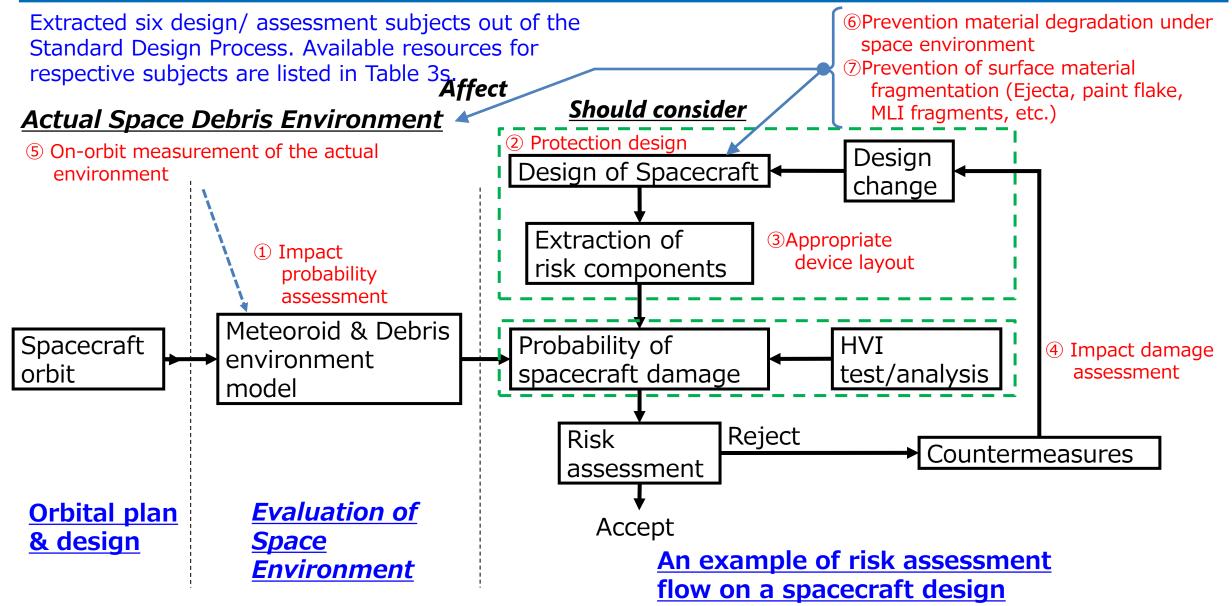
Organization	Document No.	Document Title	Section (Clauses)	Description (requirements)	Last revised date	Remarks
JAXA	JMR-003D	Space Debris Mitigation Standard	5.1.2 Limitation of combustion products from pyrotechnics and solid rocket motors	 (1) Pyrotechnic devices, except for solid rocket motors and igniter devices, shall be designed and used so as not to release combustion products and fragments larger than 1 mm in their largest dimension into Earth orbit. (2) Solid rocket motors shall be designed and operated so as not to release slag sized 1 mm or larger into GEO protected region and LEO protected region. It is evaluated on a case-by-case basis when the effect on GEO protected region by released products is limited due to its trajectory such as the moon, planetary and other missions with a highly elliptical orbit. 	Sep.9, 2020	
			5.3.1.1.8 Effect of space debris impact and protection design	Probability of the loss of disposal functions shall be calculated against impacts by space debris and meteoroid. Critical components and cables shall be in the calculation then protection measures, redundancy and layout change should be considered if the risk is unacceptable. The acceptable criteria shall be defined for each mission taking into account for the technical maturity of collision risk calculation and protection methods. Refer to "Micro-debris Impact Survivability Assessment Procedure (JERG-2-144)" about the collision risk calculation and protection design.		

4.3.2 Overview of ESA's requirement documents

Organization	Document No.	Document Title	Section (Clauses)	Description (requirements)	Last revised date	Remarks
ESA	ESA/ADMIN/IPO L(2014)2	Space Debris Mitigation Policy for Agency Projects		ESA policy defining the applicable standards, the implementation and verification procedure for Projects, and the certification of compliance from the ESA Technical Authority (independent from the Projects)	2022	https://technology.esa.int/p age/space-debris-mitigation
ESA / ECSS	ECSS-U-AS-10C, Rev. 1	Adoption Notice of ISO 24113: Space systems - Space debris mitigation requirements		European standard for Space Debris Mitigation requirements	2019/12/03	https://ecss.nl/standard/ecs s-u-as-10c-adoption-notice- of-iso-24113-space- systems-space-debris- mitigation-requirements-2/
ISO	ISO 24113:2019	Space Debris Mitigation Requirements		International standard for Space Debris Mitigation requirements	2019/07	https://www.iso.org/standar d/72383.html
ESA	ESSB-ST-U-004	ESA Re-entry Safety Requirements		ESA standard for re-entry safety requirements, including requirements for both uncontrolled re-entry and controlled re-entry (e.g. based on 5 successful ATV controlled re-entries)	2017/04/12	Distribution upon request: (space.debris.mitigation@es a.int)
ESA	ESSB-HB-U-002	ESA Space Debris Mitigation Compliance Verification Guidelines		ESA handbook explaining to Project Manager and Engineers how the requirements are implemented and verified (e.g. how to perform analysis, etc.)	2015/02/19	Issue 2 expected in Q3 2022 https://technology.esa.int/p age/space-debris-mitigation (or upon request: space.debris.mitigation@esa .int)

4.3.3 Overview of NASA's requirement documents

Organization	Document No.	Document Title	Section (Clauses)	Description (requirements)	Last revised date	Remarks
NASA	NPR 8715.6B	NASA Procedural Requirements for Limiting Orbital Debris and Evaluating the Meteoroid and Orbital Debris Environments	All	This is a top-level policy document. It defines the purpose of orbital debris mitigation, applicability of the orbital debris mitigation requirements, and roles/responsibilities of affected organizations.	16 February 2017	Available at: https://www.orbitaldebris.j sc.nasa.gov/reference- documents/
NASA	NS 8719.14C	Process for Limiting Orbital Debris	Section 4	This technical standard document establishes detailed orbital debris mitigation requirements and the technical rationale behind each requirement.	5 November 2021	Available at: https://www.orbitaldebris.j sc.nasa.gov/reference- documents/



5. "How to do" to solve the issues

An Example of Risk Assessment Flow Based on JERG-2-144

·eesa

NASA

Modified and simplified flow based on JERG-2-144 Micro-debris Impact Survivability Assessment Procedure (Kitazawa, et al., 2016) 31

Table 3a(JAXA) for Small Debris (1/3)

		Knowledge o	f three agencies S&MA cou	ıld provide
Individual Risk	Required Measures	Applicable doc's/websites (Standards, Handbooks, Databases, etc.)	Analysis Tools	Technologies / Facilities
Spacecraft damage due to small debris collision	① Impact probability assessment	 ✓ JERG-2-141 Space Environment Standard (written in Japanese) <section "meteoroid="" 10="" and<br="">Space Debris" describe meteoroid/debris environment models, selection procedures of models, and those applying process to spacecraft design phases are explained. This process coincides with ISO 14200:2012 (Process-based implementation of meteoroid and debris environment models). In addition, ISO 14200 was revised, and a new version of ISO 14200:2021 was published. JERG-2-141 is also under revised proses in 2022.></section> 	 ✓ TURANDOT It analyzes spacecraft damages from collisions with space debris. MASTER8, ORDEM3 and MEM3 are handled for debris flux database in analyses. Ref: <u>http://astro-</u> muse.com/contents en prod ucts.html 	Impact risk assessment is done using the tool

Table 3a(JAXA) for Small Debris (2/3)

		Knowledge o	f three agencies S&MA cou	ld provide
Individual Risk	Required Measures	Applicable doc's/websites (Standards, Handbooks, Databases, etc.)	Analysis Tools	Technologies / Facilities
Spacecraft damage due to small debris collision	 Protection design Appropriate equipment layout Impact damage assessment 	 JERG-2-144 Micro-debris Impact Survivability Assessment Procedure the assessment procedure for verifying the validity of the protection design of satellites and probes against risks of impact with micro-debris and meteoroid which are 1 mm or less in size and whose impact probability and impact damage is not negligible JERG-2-144-HB001 Micro- debris Impact Survivability Assessment Procedure Handbook Data provision of Various Impact Tests and numerical simulation results. Examples of spacecraft protection design (written in Japanese) 	solid and gas phases, and sometimes even the plasma state, to simulate	 ✓ Hyper velocity impact Test: 2-stage-light gas gun: ISAS projectile diameter 0.3-3.2mm velocity ~ 7km/sec ✓ Ballistic limit derived from hypervelocity impact testing and hydrocode simulations

Table 3a(JAXA): for Small Debris (3/3)

		Knowledge o	of three agencies S&MA coι	ıld provide
Individual Risk	Required Measures	Applicable doc's/websites (Standards, Handbooks, Databases, etc.)	Analysis Tools	Technologies / Facilities
Damage impact assessment error due to Small Debris information shortage (*2)	⑤ On-orbit real-time measurement of the actual space environment	 On-Orbit Impact DB (Under recovery coordination; Ref: https://matdb.jaxa.jp/main_e.h tml) 	N/A	 Space Debris Monitor for onboard Spacecraft For in-situ measurement of debris flux in the size range of 100 um to a few mm. Measurement parameter: Debris size and Impact time> Debris size and Impact time> Impact time>
Pollution due to Small Debris out of Spacecraft (Paint flake, MLI fragment, ejecta, etc.)	 ⑥ Prevention material degradation under space environment ⑦ Prevention of surface material fragmentation (Ejecta, paint flake, MLI fragments, etc.) 	 ✓ JERG-2-143 Space Environment Effects Mitigation; Ref: https://sma.jaxa.jp/en/TechDoc/D ocs/E_JAXA-JERG-2-143.pdf ✓ JMR-003D-HB001 Space Debris Prevention Design and Operation Manual; Ref: https://sma.jaxa.jp/TechDoc/Docs /JAXA-JMR-003-HB001.pdf ✓ Material DB (Under recovery coordination; Ref: https://matdb.jaxa.jp/main_e.html) 	N/A	 Material characteristics test data for space environment; Material degradation data due to AO, UV, Electron Hyper velocity impact test for ejecta assessment based on ISO11227:2012 Space environment testing facilities at TKSC facilities https://jaxa.repo.nii.ac.jp/?acti on=repository_action_common _download&item_id=2565&ite m_no=1&attribute_id=31&file_ no=1

Table 3b(ESA) for Small Debris (1/2)

		Knowledge o	f three agencies S&MA cou	ıld provide
		Applicable doc's/websites (Standards, Handbooks, Databases, etc.)	Analysis Tools	Technologies / Facilities
	① Impact probability assessment	 ✓ ECSS-U-AS-10C / ISO 24113:2019 (https://ecss.nl/standard/ecss-u- as-10c-adoption-notice-of-iso- 24113-space-systems-space- debris-mitigation-requirements- 2/) ✓ ESSB-HB-U-002 ✓ (https://technology.esa.int/page/ space-debris-mitigation) 	 ✓ ESA DRAMA/ARES/MIDAS ✓ MASTER-8 available at: https://sdup.esoc.esa.int /master/ 	✓ Models computational tools
Spacecraft damage due to (small) debris collision	 Protection design Appropriate equipment layout Impact damage assessment Unable to download; sign-in with an organization account is required. Instead, can download it from; https://www.iadc-home.org/documents_public/view/page/2/id/120#u	 ✓ ECSS-U-AS-10C / ISO 24113:2019 (https://ecss.nl/standard/ecss-u- as-10c-adoption-notice-of-iso- 24113-space-systems-space- debris-mitigation-requirements- 2/) ✓ ESSB-HB-U-002 (https://technology.esa.int/page/ space-debris-mitigation) ✓ IADC-04-03 (Protection Manual) (https://iadc- home.org/documents_public/view /id/81#u) 	 ✓ ESA DRAMA/ARES/MIDAS (https://sdup.esoc.esa.int/dra ma/) ✓ ESABASE2 (https://esabase2.net/) ✓ LS-DYNA ✓ Smoothed-Particle Hydrodynamics (SPH) codes 	 ✓ Ballistic Limit Equations (BLEs) ✓ Hypervelocity impact tests/facilities (e.g. Fraunhofer) English - Fraunhofer EMI ✓ Lessons learnt from past spacecraft

Table 3b(ESA) for Small Debris (2/2)

		Knowledge o	f three agencies S&MA cou	ıld provide
Individual Risk	Required Measures	Applicable doc's/websites (Standards, Handbooks, Databases, etc.)	Analysis Tools	Technologies / Facilities
Damage impact assessment error due to Small Debris information shortage (*2)	⑤ On-orbit real time measurement of the actual space environment	 ✓ Flight operation manuals/procedures to manage in-flight anomalies 	 ✓ Housekeeping parameter monitoring/analysis (e.g. unit parameters degradation recorded by the Operator and assessed during Anomaly Review Boards) 	operations✓ Collision probability assessments
Pollution due to Small Debris out of Spacecraft (Paint flake, MLI fragment, ejecta, etc.)	 Prevention material degradation under space environment Prevention of surface material fragmentation (Ejecta, paint flake, MLI fragments, etc.) 	 ✓ Space qualified processes/products (https://ecss.nl) ✓ Design/product assurance standards (https://ecss.nl) 	 ✓ Analysis with respect to degradation agents (e.g. radiation, thermal, outgassing, atomic oxygen, etc.) ✓ Tests ✓ Inspection 	 ✓ Best knowledge/practice basis ✓ Orbit propagation analysis from identified debris cloud events

Table 3c(NASA) for Small Debris (1/2)

Applicable doc's/websites (Standards, Handbooks, Databases, etc.). Analysis Tools Technologies/Facilities Impact probability assessment U.S. Government Orbital Debris Mitigation Standard Practices (2019), available at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ ORDEM (https://software.nasa.g ov/software/MSC- 25457-1) Impact probability assessments are done using ov/software/MSC- 25457-1) Impact probability assessments are done using (https://software.nasa.g ov/software/MSC- 26690-1) Impact probability assessments are done using (https://software.nasa.gov/ reference-documents/ Impact probability assessment Impact probability assessments are done using (https://software.nasa.gov/ reference-documents/ Impact probability assessment Impact probability (https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ Impact probability (https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ Impact probability (https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ Impact probability (https://www	Individual Risk	Required Measures	Knowledge of three agencies S&MA could provide					
Assessment Mitigation Standard Pratices (2019), available at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ (https://software.nasa.gov/ 25457-1) assessments are done using ov/software/MSC- 25457-1) VNASA Technical Standard 8719.14C (2021), available at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ > DAS (https://software.nasa.gov/ 26690-1) Ballistic limit equations derived from hypervelocity impact Spacecraft damage due to (small) debris collision > U.S. Government Orbital Debris Mitgation Standard 8719.14C (2021), available at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ > DAS (https://software.nasa.go v/software/MSC- 26690-1) > Ballistic limit equations derived from hypervelocity impact usaliable at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ > Mast Technical Standard 8719.14C (2021), available at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ > BUMPER (NASA internal) > Ballistic limit equations derived from hypervelocity impact testing (primarily at NASA WSTF) and hydrocode simulations (WSTF: https://www.nasa.gov/erters /wstf/testing_and_ana/nons.htp pervelocity_impact testing/simulations V NASA Technical Standard 8719.14C (2021), available at: https://nut.jsc.nasa.gov/ reference-documents/ > Failure criteria defined by missions or hypervelocity impact testing/simulations V NASA Technical Standard 8719.14C (2021), available at: https://nut.jsc.nasa.gov/ reference-documents/ > Failure criteria defined by missions or hypervelocity impact testing/simulations V NASA Technical Standard Batabases for fragment characterization (sha		Required Measures	••	Analysis Tools	Technologies / Facilities			
 Spacecraft damage due to (small) debris collision Protection design Appropriate equipment layout Impact damage assessment U.S. Government Orbital Debris Mitigation Standard Practices (2019), available at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ NASA Technical Standard 8719.14C (2021), available at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ NASA TP-2003-210788, Meteoroid/Debris Shielding, available at: https://hvit.jsc.nasa.gov/reference-documents/ NASA TM-2009-214785, Handbook for Designing MMOD Protection, available at: https://hvit.jsc.nasa.gov/reference-documents/ NASA TM-2009-214785, Handbook for Designing MMOD Protection, available at: https://hvit.jsc.nasa.gov/reference-documents/ NaSA TM-2009-214785, Handbook for Designing MMOD Protection, available at: https://hvit.jsc.nasa.gov/reference-documents/ NaSA TM-2009-214785, Handbook for Designing MMOD Protection, available at: https://hvit.jsc.nasa.gov/reference-documents/ NaSA TM-2009-214785, Handbook for Designing MMOD Protection, available at: https://hvit.jsc.nasa.gov/reference-documents/ Debrisat database for fragment characterization (shape, density, etc.) to 			 Mitigation Standard Practices (2019), available at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ ✓ NASA Technical Standard 8719.14C (2021), available at: https://www.orbitaldebris.jsc.nasa.gov/ 	 (https://software.nasa.g ov/software/MSC- 25457-1) ✓ ORDEM Cloud (https://ordem.appdat.js c.nasa.gov/) ✓ DAS (https://software.nasa.g ov/software/MSC- 26690-1) 	assessments are done using the tools listed to the left			
improve damage assessments	due to (small) debris	③ Appropriate equipment layout④ Impact damage	 Mitigation Standard Practices (2019), available at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ ✓ NASA Technical Standard 8719.14C (2021), available at: https://www.orbitaldebris.jsc.nasa.gov/ reference-documents/ ✓ NASA TP-2003-210788, Meteoroid/Debris Shielding, available at: https://hvit.jsc.nasa.gov/reference- documents/ ✓ NASA TM-2009-214785, Handbook for Designing MMOD Protection, available at: <u>https://hvit.jsc.nasa.gov/reference- documents/</u> ✓ DebriSat database for fragment 	 ✓ DAS (https://software.nasa.go v/software/MSC-26690-1) ✓ BUMPER (NASA internal) 	testing (primarily at NASA WSTF) and hydrocode simulations (WSTF: https://www.nasa.gov/centers /wstf/testing_and_analysis/hy pervelocity_impact/home.html) ✓ Failure criteria defined by missions or hypervelocity			

Table 3c(NASA): for Small Debris (2/2)

		Knowledge	of three agencies S&	MA could provide
Individual Risk	Required Measures	Applicable doc's/websites (Standards, Handbooks, Databases, etc.)	Analysis Tools	Technologies / Facilities
Damage impact assessment error due to Small Debris information shortage (*2)	assessment error due to Small Debris information shortage		 ✓ Anomalies: investigation tools vary, depending on the nature of anomalies 	 Anomalies: investigation technologies vary, depending on mission requirements and resources Dedicated in-situ measurement sensor technologies under development
Pollution due to Small Debris out of Spacecraft (Paint flake, MLI fragment, ejecta, etc.)	 6 Prevention material degradation under space environment 7 Prevention of surface material fragmentation (Ejecta, paint flake, MLI fragments, etc.) 	 internal) ✓ NASA TP-2003-210788, Meteoroid/Debris Shielding, available at: https://hvit.jsc.nasa.gov/ref erence-documents/ ✓ NASA TM-2009-214785, Handbook for Designing MMOD Protection, available at: https://hvit.jsc.nasa.gov/ref erence-documents/ 	✓ Different testing and analysis tools	 Hypervelocity impact testing (primarily at NASA WSTF) Space environment testing facilities at different NASA Centers. For example, the environmental testing facilities at JSC include vibration, vacuum, thermal, and thermal- vacuum chamber test operations for human spaceflight and robotic missions and provide the following services: Materials outgassing evaluations Accelerated Electrical/Electronic components burn-ins and life cycle testing Environmental cycling (thermal/humidity) for materials survivability Materials and hardware testing in extreme environments (manned/unmanned)

6. GAP analysis/ Research topics

NOTE: GAP Analysis does NOT aim to select one superior method for users but to provide the differences between available methods comprehensively.

GAP analysis/ Research topics candidates and Priorities

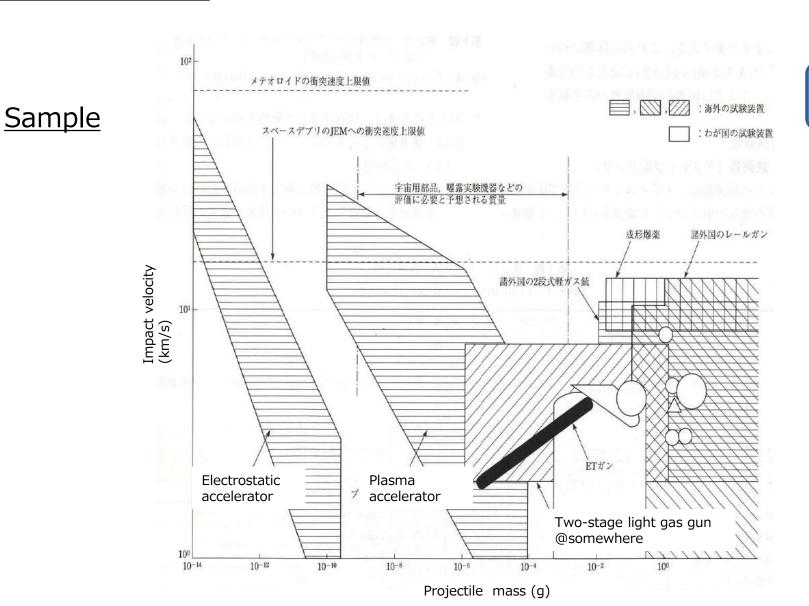
An example of GAP analysis (among 3 agencies) / Research Topics

#	A. Technologies / Facilities	Outline/ Perspective of the comparison	Priority	Remarks
A1	Hypervelocity impact facilities	Specification of each facility	#1	
A2				

#	B. Analysis Tools	Outline/ Perspective of the comparison	Priority	Remarks
B1	Debris Environment Models	Capability of each model	#2	ORDEM, MASTER, etc.
B2	Meteoroid Environment Models		Low	MEM, Grün, etc.
B3	Impact Risk Analysis Tools	Quantitative comparison in condition(s) where the most significant differences found	#3	DRAMA, Turandot, DAS, etc.
B4	Hydrocodes			Autodyne

#	C. Applicable doc's/websites (Standards, Handbooks, Databases, etc.)	Outline/ Perspective of the comparison	Priority	Remarks
C1	Documents related to protection design	Are there any differences in estimating/defining" Critical minimum size" and actual design methods for "Protection " among each applicable documents	#4	

Specification of each facility


A1	A1 Hypervelocity impact facilities No notable differences among the three agencies' facilities											
#	Org.	Location (Site)	Accelerator Type	Single Projectile Size Range	Velocit y Range	Diagnostics Available	Velocity Measurement	Target Accommodatio ns	Target Capabilities	Others	Bibliography and/or website address	
1	JAXA	ISAS (Sagamih ara)	Ex. 7/30mm horizon tal Two- stage light gas gun (PAI) 4.7/15mm vertic al Two- stage light gas g un (PAI)	0.3 -7.0mm (Ability of projectile sizes) 0.03-0.5mm (Multiple particles) 1.0 -4.8mm (single particle) (Ability of multiple shots (ex. Using sabot) also mentioned)	0.5- 7.0 km/s 0.8- 7.0 k m/s	+High-Speed Video Camera -HPV-X (Shimadzu) -HPV-1 (Shimadzu) -Phantom V2512 (Vision Research) - KIRANA (Specialized Im aging) -Fast M3K (Telops) +spectrograph -maya2000 (Ocean) -Time- resolved spectrum system (Hamamatsu)	- laser- photodetector s ystem	100cm×200cm or 45cm×30cm (Size and/or Capacity of target chamber) 100cm×200cm or 45cm×30c m	- 1Pa (Ability to pressurize and/or heat/cool targets)	- Optical, laser, e lectron microsc opes and laser profiler for target inspe ction -Compression testing machin e - Sound velocity measurement system	https://stage.t ksc.jaxa.jp/pair g/spf/	
	ESA (colla borati on exam ple)	EMI Fraunhof er (Freiburg, Germany)	Two-stage light gas gun (different sizes)	100 g	7.8 km/s	 Accelerometers Pressure gauges High-speed spectroscopy High-speed photo/video 	 Laser vibrometers Flash/impact light detectors X-ray film track 	5.5m x 3.5m x 3.5m (target chamber)	1 GPa max pressure		https://www.e mi.fraunhofer.d e/en/business- units/space/eq uipment.html	
3	NAS A	White Sands Test Facility	Horizontal Two- stage light gas guns	Projectile shapes range from spheres, cylinders, disks, and cubes to multiple projectile "shotgun" shots. Single projectiles range in diameter from 25.4 mm down to 0.4 mm. Multiple projectiles down to 0.05 mm.	Up to 7 km/s	High speed data acquisition (100 million samples per second) and imaging systems (up to 200 million frames per second) capture projectile, environment, and target data for results analysis.	Laser break- beam stations Photo diode flash detectors	Target chambers range from 107 cm diameter x 213 cm long to 274 cm diameter x 914 cm long, accommodatin g targets with different dimensions	Ability to pressurize and/or heat/cool targets	Laser microscope for target inspection Ultra-high- speed imaging system cameras to capture projectiles in flight immediately prior to impact	https://www. nasa.gov/cen ters/wstf/test ing_and_anal ysis/hypervel ocity_impact/ index.html	41

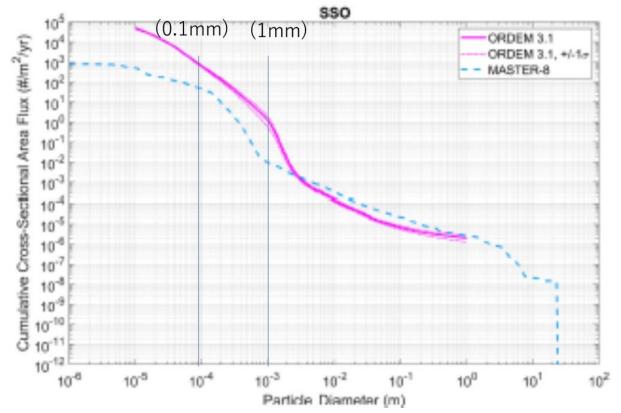
(Cont.) Launch Capability comparison

★TBD

To be updated

Debris Environment Model comparison

B1 Debris Environment Models


Model specification	MASTER-8	ORDEM 3.1(3.2)
Source	ESA	NASA
Modelling approach	Semi deterministic analysis	Measurement data
a) minimum size	1 μm	10 µm
b) orbital regime	186 km (perigee altitude) to 500 000 km (apogee altitude)	100 km to 40 000 km (> 10 µm) (LEO to GTO) 34 000 km to 40 000 km (> 10 cm) (GEO)
c) evolutionary period	1957 to 2036	2015 to 2050
Input parameter	<u>Target orbit scenario:</u> -Semi-major axis ,-Eccentricity, -Inclination, - Right ascension of ascending node,-Argument of perigee <u>Inertial volume scenario:</u> -Geocentric distance, ,-Right ascension, -Declination <u>Spatial density scenario:</u> -Lower/ upper altitude limit, -Lower/ upper decline Limit	-Apo/Peri -Altitude -Semi-major axis -Eccentricity -Inclination -Argument of perigee
Output data	<u>Flux versus</u> -Size,-Mass,-Semi-major axis,-Eccentricity, -Inclination,-Altitude,- Latitude ,-Impact velocity, -Impact declination,-Time, etc. <u>Spatial density versus</u> -Size, -Mass, -Altitude , -Declination, -Time	Flux versus -Size, -Orbit position, -Altitude, -Latitude
TLE background	Yes	(Density discrimination)
Fragments	Yes	(IN) Intacts
SRM dust and slag	Yes	(LD) Low-density (1,4 g/cc) fragments
NaK droplets	Yes	(MD) Medium-density (2,8 g/cc) fragments & microdebris
Paint flakes	Yes	(HD) High-density (7,9 g/cc) fragments & microdebris
West ford needles	Yes	(NK) RORSAT NaK coolant droplets (0,9 g/cc)
MLI fragments	Yes	
Primary data source/ validation	-LDEF,-CME, -HST (SM1, SM3B), -EuReCa,-PROOF 2009	-SSN catalogue, -LDEF, -Haystack radar, -HST-SA., -STS window and radiator, -MOSEZT telescope, -HAX, -Goldstone radar
Web address	https://sdup.esoc.esa.int/	https://orbitaldebris.jsc.nasa.gov/modeling/ordem.html 43

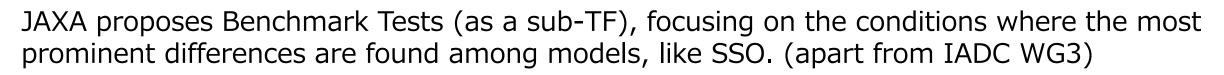
(Cont.) GAP between debris environment

B1 Debris Environment Models MASTER-8 and ORDEM 3.1 have been assessed when updated.

Implementation of debris environment model to actual design.

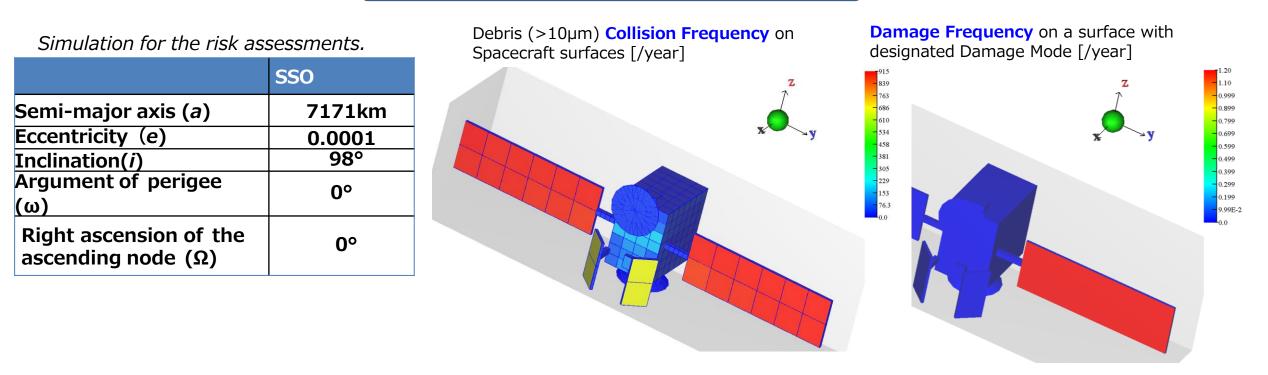
MANIS, et al.(2021) suggested there is a large difference in impact flux of small debris between MASTER-8 and ORDEM 3.1

How to select a model for spacecraft design? Cf. ISO 14200 describes; When selecting an environment model, consideration should be given to the fact that there can be significant differences in the calculated fluxes among the available candidate models. The customer and/or the supplier should compare the fluxes of several models.


Reference

A. Horstmann, A. Manis, V. Braun, M. Matney, A. Vavrin, D. Gates, J. Seago, P. Anz-Meador, C. Wiedemann, S. Lemmens, FLUX COMPARISON OF MASTER-8 AND ORDEM 3.1 MODELLED SPACE DEBRIS POPULATION, Proc. 8th European Conference on Space Debris (virtual), Darmstadt, Germany, 20–23 April 2021, published by the ESA Space Debris Office Ed. T. Flohrer, S. Lemmens & F. Schmitz, (http://conference.sdo.esoc.esa.int, May 2021) A. MANIS, M. MATNEY, A.VAVRIN, D. GATES, J. SEAGO, AND P. ANZ-MEADOR, NASA Orbital Debris Quarterly News Vol. 25, Issue 3, September 2021

Impact Risk Analysis Tools – Benchmark candidate


B3

Impact Risk Analysis Tools JAXA decided to assess using GCOM-C within this Fiscal Year.

Operators surely want to understand the quantitative differences from design perspective.

Candidate Condition & Analysis Image

(1-year from 2018/01/01 Orbit : SMA 7187km, ECC 1.0e-3, Inc 98deg Earth-pointing)5

7. Points of Contact in each Agency

Please contact POCs below for further Small Debris-related information.

Agency	POC (section or persons)	Contact Address	Note
JAXA	S&MA Department System and Orbit Safety Unit	Sustainability SpaceDebris@ml.jaxa.jp	Space Debris HP is available at; https://www.jaxa.jp/projects/debris/index_j.html (in Japanese ONLY at this moment)
ESA	Independent Safety Office (Product Assurance and Safety Department)	Paloma.villar@esa.int Sergio.Ventura@esa.int	https://technology.esa.int/page/space-debris-mitigation
NASA	Office of Safety and Mission Assurance (OSMA) Orbital Debris Program Office (ODPO)	 Dr. Frank Groen, HQ 5F87, NASA Headquarters, 300 E ST SW, Washington, DC, 20546-0001 Dr. Matt Forsbacka, HQ 5F87, NASA Headquarters, 300 E ST SW, Washington, DC, 20546-0001 Dr. JC. Liou, XI-5, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058 	https://sma.nasa.gov/