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Overview

 Fast yet accurate forward models are crucial for:
— Variational retrieval algorithms
— Satellite simulators in weather & climate models (e.g. COSP)
— Data assimilation

* In this talk | will;

— lllustrate how good forward models can be used to extract unexpected information
from the observations, using the CAPTIVATE (ACM-CAP) synergistic retrieval scheme

— Highlight how they might offer new retrieval approaches and potentially suggest new
satellite concepts

— Hack the two-stream equations mercilessly
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Two-stream source function (TSSF) method for infrared & microwave radiances

« TSSF Underpins RTTOV-SCATT used for all-sky microwave assimilation at ECMWF

« Used in CAPTIVATE for simulating infrared radiances, but can also simulate 94 GHz brightness

temperature
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Time-dependent two-stream method (TDTS) for radar & lidar multiple scattering

* Add time-dependent terms to two stream equations, part of
“multiscatter” package for radar and lidar multiple scattering
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 TDTS is used in CAPTIVATE and 2C-RAIN-PROFILE
* At night, CALIPSO alone can be used to estimate LWP and cloud base
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Poor Man’s Radiative Transfer in 3D (POMART3D)

* What is the cheapest way to include 3D effects accurately and differentiably?

« POMART3D adds no new variables, just horizontally advects and diffuses two-stream fluxes
between columns as the solver progresses

» Can be used for shortwave and longwave fluxes in a cloud-resolving model, or (in principle)
as the forward model in a 3D retrieval

Diffuse fluxes

— F < are horizontally
B diffused during
/ up/down passes
Radiances could
/ be advected
/ horizontally
Column 1 Column 2 Column 3

o)
A\~ 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 10



A cumulonimbus near Darwin at 200-m resolution

MYSTIC POMART3D Two-stream 1D
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« POMART3D captures the shadows and bright patches seen in Monte Carlo calculations
(missing with the independent column approximation), at a tiny fraction of the
computational cost

S ECMWEF Model simulation: Charmaine Franklin, Monte Carlo calculations: Fabian Jakub 1



Outlook

Can we use the Cal/Val campaigns to evaluate our
inferences in complex scenes?

— How well can we infer liquid clouds embedded in rain and
improve rain rates via solar radiances & PIA?

— To what extent are 94 GHz brightness temperatures providing
additional information in mixed-phase clouds?

What new forward models are needed to extract additional
information from novel measurements?

Do sophisticated forward models open up possibilities of
new satellite instruments (e.g. wide field-of-view lidar?)

Can we use fully 3D forward models to do a fully 3D
retrieval combining active sensors with (multi-view) imager?

Can we answer these questions without resorting to
Machine Learning? ©
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