

Heat Dissipation Structure of PCB for Space Applications

26th June 2024

OKI Circuit Technology Co., Ltd.

Technology Headquarter Yasuo Toyokura

- Company overview
- Current situation of space components
- Manufacturability and reliability
- Effect on heat dissipation (Source from JAXA)
- Conclusion & future plan

Design, manufacture, assembly and sale of

and electronic components (Main market: Space, Defense)

printed circuit boards, electronic devices

Established 1980 (44years)

Business

7 types of JAXA-QTS-2140 (No.1 of Japan) Certification

The Shonai Plain is the most suitable region for rice cultivation in Japan.

Sake brewery in Tsuruoka City wins gold medal at 2023 Japanese Sake Competition

Japanese heritage Five Storeyed Pagoda on Hagurosan

© Copyright 2024 OKI Circuit Technology Co., Ltd.

Space market

• We provide PCBs for many satellites and launch vehicles.(2008~2026)

© Copyright 2024 OKI Circuit Technology Co., Ltd.

Company overview

Current situation of space components

- Manufacturability and reliability
- Effect on heat dissipation (Source from JAXA)
- Conclusion & future plan

Current situation of space components

- Electrical power consumption will increase due to high speed and larger capacity communication such as 5G and 6G
- As the number of high-performance components increases, electrical power consumption also increases
- For the future, heat dissipation structures for space electric components become increasingly necessary

Defections of electrical components by generation of heat

- Increasing of electrical power induces generation of heat raising of package components
- Generation of heat of components impacts to transmission delay & defection

© Copyright 2024 OKI Circuit Technology Co., Ltd.

Mechanism of heat dissipation in space applications

[Examine 3 types of heat transmission]

- Convection (flow of heated gas) cannot be expected in space circumstance
- Conduction (through solid) is more efficient than radiation (electromagnetic wave)
- ✓ Arrange materials with high thermal conductivity between electric parts and chassis
- ✓ Increase materials with higher thermal conductivity to improve heart dissipation efficiency

Company overview

- Current situation of space components
- Manufacturability and reliability
- Effect on heat dissipation (Source from JAXA)
- Conclusion & future plan

Verification of manufacturability and heat dissipation

We devised 3 structures and verified manufacturability and heat dissipation

CCL: Copper Clad Laminate PP: Prepreg SM: Solder mask

		Туре 1	Type 2	Туре 3	
(0	Struc- ture	Copper inlay in PTH	Copper inlay in PTH	HDI (2 stages)	
ations	CCL	General material (Thermal conductivity:0.2W/mK)	Better thermal conductivity material (Thermal conductivity:0.75 to 0.85W/mK)	Better thermal conductivity material (Thermal conductivity:0.75 to 0.85W/mK)	
oecifio	PP	Same as above	Same as above	Excellent thermal conductivity material for HDI (Thermal conductivity:3.0W/mK)	
, х	SM	General material (Thermal conductivity:0.25W/mK)	Excellent thermal conductivity material (Thermal conductivity:2.0W/mK)	Excellent thermal conductivity material (Thermal conductivity:2.0W/mK)	
Stru dra	uctural wing	General materials 0.2W/mK Copper inlay	Better thermal conductivity material 0.75~0.85W/mK Copper inlay	Excellent thermal conductivity material 3.0W/mK Copper inlay Copper inlay	

Properties of materials

Structure/Mate	erial	Type 1 General Material	Type 2 Better thermal conductivity material	Type 3 Excellent thermal conductivity material		
	Category	Copper clad laminate Prepreg	Copper clad laminate Prepreg	Copper clad laminate Prepreg	Prepreg for HDI layers	
Lominoto	Supplier	Resonac	Resonac	Resonac	RISHO KOGYO	
materials	Model Name	MCL-I-671	MCL-E-679FG	MCL-E-679FG	ES-3245	
	Thermal Conductivity (W/mK)	0.20	0.75-0.85	0.75-0.85	3.0	
	Supplier	TAIYO INK MFG				
	Model name	PSR-4000	PSR-4000 HS-2W			
Solder Mask	Thermal Conductivity (W/mK)	0.25	2.0			

Reliability test - specification of type 3 structure

All structures were manufactured without any problems and had heat dissipation properties as expected. Next we performed reliability tests.

Reliability test result

No.	Item	Test Condition	Method	Result	Judgement
1	Thermal stress	Solder float 288°Cx10sec x 3times	Visual	No measling, cracks, and other defects	PASS
2			Microsection	No defects	PASS
3	Thermal cycling	Precondition: Reflow Sim. 3times Min. temp.: -65°C Max. temp.: +125°C Dwell time: 15min Number of cycles: 5,000	Visual	No open circuit, blistering, measling, crazing or delamination.	PASS
4			Change in connection resistance	Max. 0.36% (Requirements: less than 10%)	PASS
5			Insulation resistance	Min. $1E+10\Omega$ (Requirements: more than $5E+8M\Omega$)	PASS
6			Dielectric withstanding voltage	No exhibit insulation breakdown, flashover or sparkover	PASS
7			Microsection	No defect	PASS
8	Humidity and Insulation Resistance	Min. temp: 25°C Max. temp: 65°C Humidity: 90 to 98% Number of cycles: 20 Applied voltage: 100V	Visual	No blistering, measling or delamination	PASS
9			Insulation resistance	Min. $6E+10\Omega$ (Requirements: more than $5E+8M\Omega$)	PASS
10			Dielectric withstanding voltage	No exhibit insulation breakdown, flashover or sparkover	PASS
11	Interconnect Stress Test	Precondition: 230°CX3times Peak temp: 190°C Number of cycles: 3,000	C C C C C C C C C C C C C C C C C C C		PASS

Reliability test result (microsection of after thermal stress)

No laminate clacks and other defect of around the copper inlay

© Copyright 2024 OKI Circuit Technology Co., Ltd.

microvia pad

S OKI CONFIDENTIAL

and no separation and other defect of microvia

- Company overview
- Current situation of space components
- Manufacturability and reliability
- Effect on heat dissipation (Source from JAXA)
 - Results of Joint R&D with JAXA
- Conclusion & future plan

Souse from JAXA Effectiveness of PCB structure (Comparison of thermal conduction)

We mounted the two components, "Ceramic BGA components" and "heat-generation components", and compared the temperature rise.

Souse from JAXA

Effectiveness of PCB structure(Figure of evaluation sample)

Mounting components on PCBs with General material and type 3 structures and measuring changes in heat generation

*For the two heat-generating parts, the measurement was performed with 6.6W applied.

Souse from JAXA Effectiveness of PCB structure (Figures of under evaluation)

• Assuming outer space, evaluation was conducted in a vacuum chamber.

Arrangement in vacuum chamber

Souse from JAXA

I Effectiveness of PCB structure(Result)

In the case of this sample, it was confirmed that the high thermal conductivity substrate (Type III), which has good thermal conductivity, the temperature dropped 30°C or more at the time of semiconductor 10 W heat generation compared to the conventional substrate (General material). As a result, the life of the component is extended, and the failure rate is expected to be reduced and reliability improved.

© Copyright 2024 OKI Circuit Technology Co., Ltd.

- Company overview
- Current situation of space components
- Manufacturability and reliability
- Effect on heat dissipation (Source from JAXA)
- Conclusion & future plan

Conclusion

- Confirmed that there is no any problem of reliability of evaluated high heat dissipation PCB
- Verified to be able to expect decreasing thermal more than 30 °C in case of 10W generation of heat of semiconductor in comparison with conventional normal PCB on high thermal conductivity PCB
- As that result, getting longer of component lifetime, decline of defective rate, improvement of reliability are expected

Future plan

- Promote to supply as JAXA certificated components by new structure
- Expand to apply to surface infrastructure equipment
- Proceed evaluation of applied products that enhance heat dissipation effect(convex shape copper inlay)

Thanks

We would like to express much appreciation to JAXA for their support and cooperation.

Open up your dreams

We will continue to develop and supply state-of-the-art printed circuit boards for the safety, security, and dreams of humanity