ECMWF

Guiding Principles and Concepts for the Use of AI in DTE.

AI4DTE – Digital Platform Demonstrator

Jonny Langstone – Software Engineer (Telespazio UK)

Téo Bloch – Data Scientist (Telespazio UK)

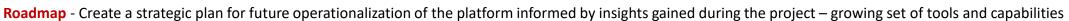
Introduction

AI4DTE Project Overview

 20-month project on behalf of the ESA Φ-lab to develop and demonstrate a prototype cloud-based platform for AI-enabled applications in the context of the DTE initiative.

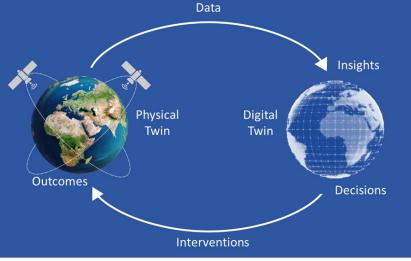
AI4DTE Project Objectives

 \bigcirc


Develop Core AI Infrastructure – Create a robust, scalable AI software stack to handle various DTE domains

DTE Use Cases - Validate the platforms effectiveness with real-world scenarios with help from consortium partners

Refine – Understand the constraints and requirements guiding the use of AI in DTE- Identify limitations, risks and opportunities.


Collaboration – Build and foster a community of AI4DTE solution providers and establish partnerships with DT user communities

UNIVERSITY OF

THE UNIVERSITY

cience and

·ect

VRAIN

ECMWF

ECMWF Cesa

Architecture Overview

GitHub Integration

Utilizes GitHub for comprehensive platform governance, managing memberships through GitHub organization and team structures, and repository management to track all development changes.

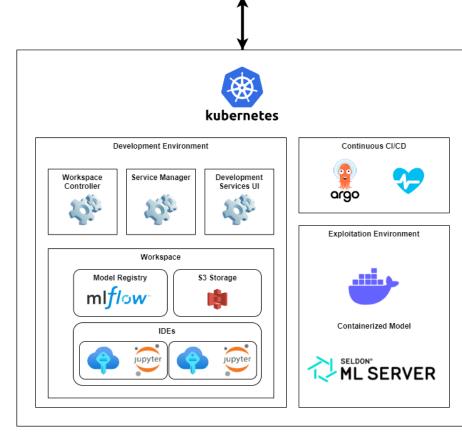
Kubernetes for Orchestration

Employed as the backbone of the platform, ensuring scalability and robust management of containerized workloads across development and production environments.

CI/CD With Argo

Automates the deployment of resources and updates the platform –Declarative GitOps approach.

Development Environment


Core elements of the software stack – reconciles with GitHub and creates resources – e.g. shared workspaces tailored to GitHub team memberships

Workspace & IDE

S3 Storage (training data), Model Registry and user specific IDE's can be spawned – Development as a Service (DaaS)

Exploitation Environment

Independent component that allows consumer users to make use of published models – Model as a Service (MaaS) – API Endpoint.

GitHub

DTE Use Case Implementation – Road Condition

Summary

- The Road Pavement Condition use case is divided in two blocks:
 - The Current Road Pavement Condition model, which uses Synthetic Aperture Radar (SAR) satellite data, survey data from TRACS vehicles and rainfall records to retrieve updates on the current condition of the road pavement.
 - The Future Road Pavement Condition model, which can use the outputs from the current condition model and rainfall statistics to estimate the road pavement condition with a 1-year lead-time.

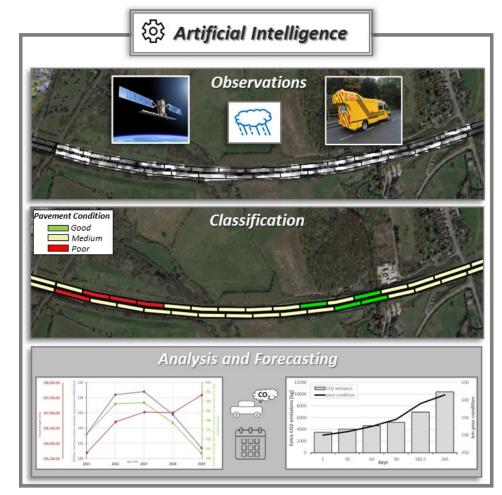


Image credit: Telespazio UK Ltd Project: Artificial Intelligence for Digital Twin Earth (AI4DTE) Software Stack

DTE Use Case Implementation – Road Condition

Data Preparation

- Pull and prepare data from object store.
- Pre-process data.
- Generate synthetic data for class imbalance.

mlflow 2A0 Experiments Models								
Experiments 🕀 🖪			Displaying Runs from 2 Experiments					
Search Experiments								
			Table view	Chart view Artifact view	Q metrics.rmse <			
		1 🖹	Time created	✓ State Active ✓				
0		I 🖹						
		1 🖻	≞ [↑] Sort: rmse	∽ 🔚 Columns 🗸				
		1 🗈	□ ◎	Run Name	Created	Duration	rmse ≞↑	model_type
		1 🗈	□		⊘ 10 days ago			lgbm
0		I 🗈			3 hours ago			lgbm
0		1 🗈			② 21 hours ago			lgbm
					Ø 3 hours ago			lgbm
					② 21 hours ago		0.184	lgbm
					⊘ 10 days ago			lgbm
			0 0		Ø 3 hours ago			mlp

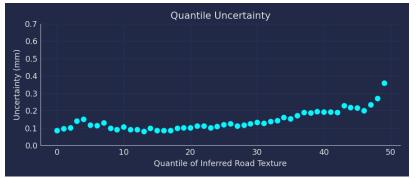
MLFlow used within the IDE/workspace to log performance and models, and create API access to models.

Current Road Condition

Train inference models

We explore both a neural network (RMSE: 0.191) and a gradient boosted tree ensemble (RMSE: 0.178).

Quantify impact of synthetic data


Synthetic data allowed a ~4% decrease in RMSE for the tree ensemble, and ~10% decrease in neural network RMSE.

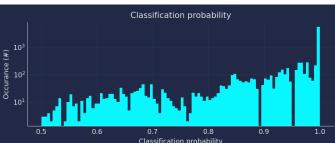
Apply best model to whole dataset

Useful for analysing performance and uncertainty calculations.

Quantify uncertainty

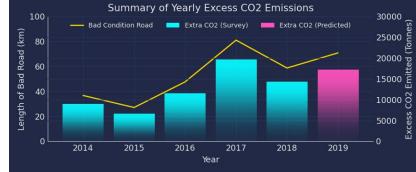
Parametric uncertainty estimated using distribution of ground truth in each of 50 quantiles of inferred road surface condition. Classification probability can then be derived from road condition inference and uncertainty.

DTE Use Case Implementation – Road Condition


Data Preparation

- Pull and prepare data from object store.
- Pre-process data.
- Generate synthetic data for class imbalance.

Current Road Condition


- Train inference models.
- Quantify impact of synthetic data.
- Apply best model to whole dataset.
- Quantify uncertainty.

Future Road Condition and CO₂ (km) **Train prediction models** Neural network RMSE: 0.274. Bad gradient boosted trees RMSE: 0.200. Apply best model to whole dataset gth Useful for analysing performance and uncertainty calculations. **Quantify uncertainty** Quantile-based estimation of parametric uncertainty. Classification probability can then be derived from condition prediction road and uncertainty. Calculate Excess CO2 emissions Based on academic research (Setyawan et al., 2015), bad condition roads lead to a 2.49% increase in CO₂ emissions. CO₂ emissions per kilometre per day can be Estimated from government reports (DofT:

<u>Transport and Environment Statistics</u> and <u>DofT</u>: Road Lengths in Great Britain).

DTE Use Case Implementation – Road Condition

Data Preparation


- Pull and prepare data from object store.
- Pre-process data.
- Generate synthetic data for class imbalance.

Current Road Condition

- Train inference models.
- Quantify impact of synthetic data.
- Apply best model to whole dataset.
- Quantify uncertainty.

Future Road Condition and CO₂

- Train prediction models.
- Apply best model to whole dataset.
- Quantify uncertainty.
- Calculate Excess CO2 emissions.

Decision Support App Built and hosted within the platform

ECMWF

· e esa

Guiding Principles and Looking Ahead

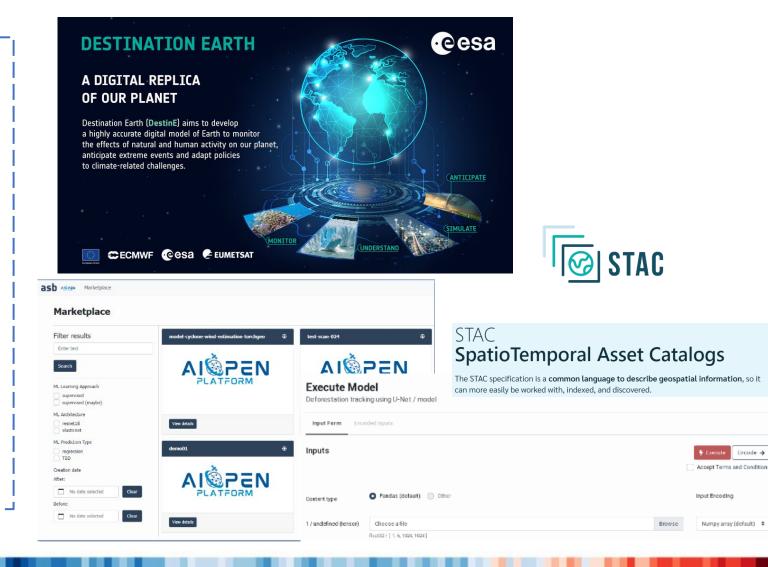
Modularity

• Decoupling – pluggable components

Evolvability

- Cloud agnostic infrastructure
- Additional GPU to scale workloads
- Integration initiatives e.g. Destination Earth / Sentinel Hub API

Trustworthiness and Reliability


- Strong model and data governance to maintain system integrity and trust.
- Communicating uncertainties fosters trust and credibility in the platform.
- Presentation the models data story telling techniques

User Enablement

• Minimize technical complexities, enabling users to focus on domain-specific tasks – Interactive UI

Discoverability

Cataloguing of Models and Training Data - Marketplace

ECMWF

·ecs

Thank You

· e esa

ECMWF

Jonny.Langstone@telespazio.com Teo.bloch@telespazio.com